< Avuwiner

Tina Linux £I%b
AW Zic]E]]

RZsS: 1.4
A% BHR: 2021.03.16

@LWIIWER

MHER: WE

hRZs 758
hR2s S BHA HAZITA AEHR
1.0 2019.02.18 781 LS
1.1 2019.07.18 781 10 PWM TX #&30i5ER
1.2 2020.08.24 AWA1611 1. BRZ&= 2. 70 R329 BYIRTAEA
1.3 2020.10.14 AWA1402 BeREB I EIR
1.4 2021.03.16 AWA1611 BB IR R FF Linux-5.4 A
%, R528 F&

WRINFE © HRB2ERRRNERAR. RE—IF

@LWIMIER
s MXHEER: WE

1 #hR 1
1.1 STEEEITY . . o e e 1
1.2 BAREE e 1
1.3 EREE e 1
1.4 BRARBHER e 1

2 O5MEREMEDIR 3
2.1 I9MEBIEREITT e 3
2.2 FIOMREEBTDIY e 3

2.2.1 NECHMYAHE o o e 4
2.2.2 NECHMYERED e 4
2.2.3 WIAEIN . . . 4

3 Linux At RC F&4 6
3.1 RCDecoders i i i it e e e e e e e e e e e B e 7
3.2 RCKeymaps i i i it e e e et e e e e e e 8
33 RCIEGEIRBN o o 9
3.4 RCIHR(FHEBENESSHEMHMMIE e L e 12

4 Sunxi F& IR EzhiicE 14
4.1 Kernel menueonfig BBE L 14

4.1.1 Linux-4.9 . 0. o d 14
4.1.2 Linux-5.4 | .. . L L e e 16
42 DTSEZE o e o e e 18
4.2.1 LIinux-4.9 e e 18
422 Linux-5.4 ... 19
4.3 FIMRCkeymap4 . . e 21

5 IR IREHLEIE 22
5.1 MR o e e 22
5.2 BEM . . . e 22
5.3 MR e 23

5.3.1 MK IRRXINEE o e 23
532 MK IRTX THEE o e e e 25
5.3.3 MIXIRLOOPINEE o o e e e e 26

WRIRFE © HRB2ERRRNHERAE. RE—TIMF ii

@LWIMIER
g MXHEER: WE

2-1
2-2
2-3
2-4
2-5
2-6
3-1
4-1
4-2
4-3
4-4
4-5
4-6

TINBIEMESHEERIE 3
TIMEURSK . . e 3
NECHMYADBBEE 1 SiBEE 0 oo e e e e e e e 4
NEC thXWIEI 4
NEC thi¥ repeat A&z 5
NEC MMXEERRERS . . . o o e 5
Linux R#% RC FRFMEZEE e 6
RCEZERE o o e 15
decoders EFRFRE e 15
GPIOIR EHECESRE o o e e e e e e e 16
SUNXIIRIXBIEEESRE . . . - . . o o o e e e e e e e e e e e e e e 16
Linux-5.4 RCEEEE e 17
Linux-5.4 decoders &R e 17
Linux-5.4 SUNXI IR IXGHECESRME o o e e e e 18

WRIRFE © HRB2ERRRNHERAE. RE—TIMF iii

@LWIMIER
g MXHEER: WE

1.1 XHEfET

X EENA Linux AIZI5MNEEF RS (Linux Infrared Remote Control System) AYE R
IR, Linux A% RC FRAFRIELR, TIMNLEFIZRIREIRIREHED & MR IIERTZ.

1.2 Bird

FXHEERTFHA. BEAINREIRIF LA RER.

1.3 EREE

& 1-1: ESArF@EYIER

B AiZhfz s RN

R328 Linux-4.9 gpio-ir-recv.c
R30 Linux-4.9 gpio-ir-recv.c
R329 Linux-4.9 sunxi-ir-dev.c

sunxi-ir-tx.c
R528 Linux-5.4 sunxi-ir-dev.c
sunxi-ir-tx.c

1.4 FHXRKIERER

& 1-2: RiEWEAR

ANig piol)z]

GPIO IR IRz S EH GPIO W= E TSN AVIR TS
SUNXI IR IXzf ETFBLIIMERD IR IRXEH

IR Infrared Remote £I%p

WA © BSEERERHERAE. RE—TF 1

(Auwiner
NHEER: W

Ai& 5% EH
RC Remote Control iZfg&E, XHHARLIIN

R
\,\“"“ﬂe

WA © BSEERERHERAE. RE—TF 2

@LWIMIER
g MXHEER: WE

2.1 AIMEFERTT

ISMERHINEBRS, LWl RC-5, RC-6, NEC, SIRC %, FidthidEBLLiRE S, AR L
T2 LARK R BE FE Bk (B B SR 4w BT o

LB LR TIREN, BIRSSERERITE— T RBEEIIER, XK LEaTE
T SHER, BAIMERNETES, XNREHEEIRIZSENIER ST, ZE%STERIK
EIMBASNEGRIE S, HERNETRERFTEE. W TERDOER,

2-1: fSMEERE S BV RIE

THNBHGRE STE—MRER AR, BWCKEN M T ESERANRA, Eialt
ESMEBLIINEFINES, MRENESITEEENESAIESR P HGIESEXPRoARA#1T
255, UMERREREHAPESEIFMEENT, REFCRNEH DI, FEAARE. NE
2-2 BULIIMEWEK, —IRERAThakihES, HMRERREAMML,

2-2: IHMEWSK

2.2 LI5MRES Y

TEHURELA NEC X515,

WRAFRE © BseEREROERAE. RE—TNF 3

@LW//WER
MXHEER: WE

2.2.1 NEC Whi}4HIE

8 (it 8 IdpSKE

FrEmmEiE (AP AI6H< (REE)

i fk o &8 2 (B RV BT [B] B Rk LIS S HYIES] (PPM)
38KHz &K

SAUNERR 1.12ms (KBF) HE 2.25ms (FEF)

2.2.2 NEC thi¥4mt5

NEC thi¥iZ% 1 5i8%8 0 WRTNEFMR, ERKATZEXNES—SUHITHD, BB 1A
2.25ms, BXAEYE] 560us; Z48 0 /9 1.12ms, RkAESE] 560us, PFLAFRATARIERK AT B
KfEtD, Hob, WEBRSTHN 1/3 E 1/4

4+— | ogical "1" -t Logizal "0"—
B0 +EEEIps+ 4560
+ 2.28mz -l 13 2me—m

2-3: NEC Y8248 1 5i%%8 0

2.2.3 Mmirgat

ST ERS LRNIREN, ERSILAE—ITHLES, XMESME—TKH, EEST3IS
g, itk (8%) FEMGSFES BHRAX 9ms By AGC BgmiEhlfkH, TR
EWSRPARKER D, &EE 4.5ms TR (RBF) , XTZE NEC WhilI5188. AR
8bit RYMEALED R 8bhit FIMIUHITRIRES, ETREGLSNERE, RIBETLARRLE, REKEN
EE. HIVARE, titFERMGSFREMUTLEE. —MSNEHINEZEERN, BAE—(
B RBEE, B 67.42ms,

fRT 51265, BREMEEELUIN, Mi&EEE 1bit B 560us BARELE, HER—1TIR
KESBIRZ=A, B LU X MEBRY | B — i R U ST 5o

003710740

é-l—EIms—lr Bz *l—.-’-'-.ddress—lr -l—.-’-'-.ddress—l-— 1—D:ummanu:|—lr -I—I:Dmmand—l-

2-4: NEC thiXtitg =

WRAFRE © BseEREROERAE. RE—TNF 4

@LW//WER
MXHEER: WE

NREBIEE LVIRR—EZE, XTHTREE—R, BEEMRE 110ms SRXXEEH, HIEER
BIREREN. EEBELERREE, B—1 9ms BIBKH. 2.25ms KEBFH 560us BIPKPLAR, W
TEIFfT.

110 ms——i—— 110 ms—— - ——110 ms——— b ——— 110 mz——

Command FRepeat Repeat Repeat Repeat

- =

2-5: NEC ¥ repeat mitgz

FEARHNRE, —MROIIN—FREANTREZERZRIHNE, WASET, HEHpEHERKE
F, KEENAZRTRALG CPU LEBIEF U TEFR. XNFARIZR#EE, —RB—1%1)
BB ITSERL, RIATE CPU HFIA GPIO Sz mt ryRHAZ, AEER CPU #1T
ERIFAERD

2-6: NEC WX SEPRiHZ

WRAFRE © BseEREROERAE. RE—TNF 5

(Auwiner
ISR WE

Linux N#% RC ¥& %

Linux £ RC FRFARME T WLAIMTHINZH, 2B/ E9: RC %0 (RC Core) «
WEEBKHARISES (RC Decoders). @8EMgtR (RC Keymaps) . £I9MaINI&ERED (RC
Device Driver) # LIRC (Linux Infrared Remote Control) %[,

Hh, RC Core 1% RC 8 &NEMHEIE, RC Decoders SEIXY IR $#iBRVARMT, FHi@id Input
A% FIRGHEE; LIRC Interface IS5 user space MIXH, 5#EUE IR RAW $iREIRHLA
NEAE, BALUERNASE NNEIELIZELS RC Core, Hi@id RC Device &iZEHZx,

RC FRARMEXAIZERRE A tina/lichee/<kernel version>/drivers/media/rc

T user

LIRC Interf:

r

RC Decoders

RC Keyr’s

C C/)re
|

.

hardware

3-1: Linux R#Z RC FRSKIERE

(0 5588
EXE, BT Linux-5.4 B RC FRSGET Linux-4.9 Bl #1778, Elt RC FRABE—LLEMEHERIHSR
% Linux-4.9 BHA—H,
ERTAZNEWERE BT —HEE, E97F 4.9 7 5.4 FHTNHNB. EFEERIMEWERRBZERTFHIRZ, W
ZEMFHRBERITAZEBE K.

WA © BSEERERHERAE. RE—TF 6

OO Uk WN -

o ©

OO Ul WN =

e
B W N~ O O

@LWIMIER

XAEER:

3.1 RC Decoders

RC decoders EIRBMREI T AL RIARKHHITHEIS, #2328 — ir raw handler 4514

AR

LEMMKRFRTEAIE . drivers/media/rc/rc-core-priv.h

Linux-4.9 RC F&%::

u64 protocols; /* which are handled by this handler */

/* These two should only be used by the lirc decoder */
int (*raw_register)(struct rc dev *dev);
int (*raw_unregister)(struct rc_dev *dev);

struct ir_raw_handler {
struct list head list;
int (*decode) (struct
13

rc_dev *dev, struct ir raw event event);

Linux-5.4 RC ¥&%::

struct ir raw _handler {
struct list head
u32 carrier;
u32 min timeout;
}i

u64 protocolsgh/* which are handled byA ERiSA handler */
int (*decode) (struct rc dev *dev, struct ir raw event event);
int (*encode) (enum /rc proto protocol,. u32 scancode,

struct 1r raw event *events, unsigned int max);

/* Thes€ two shoul@only be used by the mce kbd decoder */
int (*raw register)(struct rc/dev *dev);
int (*raw unregister)(struct/rc dev *dev);

list;

RC Decoder @30 TR REGHITEMAEE, (drivers/media/rc/rc-main.c)

int ir raw handler register(struct ir raw handler *ir raw handler)
void ir raw_handler unregister(struct ir_raw handler *ir raw_handler)

FR&E MM Decoder IIE—

N2B#ER ir raw handler list 7, & IR %TL'F?U;EE?T, RC Core

S AEMAVERIDEERT IR SUBMRE, 35, NYEA— M RIESRE—MEIR, SEAVRD
B[BEASWIT, FIUARER T ERAEILDSSNEZINZF, LIRC Decoder 1"31‘&5(79—/\’%55{% De-
coder #1T)EM, JFMBEY raw register KEARIARELIE lirc dev, RFREBA LUBIAREN M4
#O5 lirc #1375, BIRIEIERIN lirc interface,

Decoder M At E—

1 decode K%, RC Core ¥Rk SHENIKHEREEE] decode

K%, M decode I‘_I’ﬁﬂlE’\J%I)bﬁ‘JExE MRS, B—RAASBHANTRE, EF—REHET
BY, PARRIREIEIGINS#HTT TR,

IR © HiB2EREROBIRAR. RE—INF 7

OO Ul WN =

1
2
3
4

@LWIMIER
: KRER: W

LIRC A, 81k (BERHEIFE) A—1 ir raw_event Z&#R7R:

struct ir raw event {
union {
u32 duration; /*BYEIZEE, LAnsAEfL, —POnsHIBKHRIREFMFTIARE */
u32 carrier;
+
u8 duty cycle;
unsigned pulse:1; //=EhkH, ER=H
unsigned reset:1;
unsigned timeout:1;
unsigned carrier_report:1;
};

LIRC #3dFhkhmERLLIRER eq margin(). geq margin() K, EAFREEE_HZ
— 85t KR, RC Decoder FYZE LI r]E&%E NEC Decoder BYSZIR:

bool geq margin(unsigned d1, unsigned d2, unsigned margin)
bool eq margin(unsigned dl, unsigned d2, unsigned margin)

3.2 RC Keymaps

RC Keymaps #7E<kernel version>fdrivers/media/rc/keymaps BR T, FEMEES
BERFERIREIREY S FRRMGHRRIVERMESAHEIS Linux input RAMITES XTI
k. BPALESEXIRHEMET, 21 SDKE AW FRINAY rc-aw-nec.c X4, S2HAMIIBEEX
NEC Code B5§R, EFEFE—1 rc_map table £#%4A, SRR iREms, BIA
H{EM input RGN key code XTRL,

static struct rc map table aw nec[] = {
{ 0x04fblae5, KEY_POWER}, /* power */
{ 6x04fb23dc, KEY.MUTE}, 7* mute */
{ 0x04fbl3ec, KEY 1},
{ 0x04fbleef, KEY_ 2},
{ 0x04fb43bc, KEY_VOD},

¥

#id rc_map register RFCEM —DMIZEIRGTE] RC REEH, rc_map list REFSFMAY
rc_map, #MENX rc_map BY, rc_type IEEZRBMFEAD IR i, £ RC Decoder E£iRiZ
B, S5EXBEXH IR MMYERHITER, NRTEMAIINESTRAERE FIR, RC IGHIRED
FIEER keymap name ST IEAE X B name 5, rc core iRHE name FTED 24 wifsE A RIS
ENE

static struct rc map list aw nec map = {
.map = {
.scan = aw_nec,
.size = ARRAY_SIZE(aw_nec),

IR © HiB2EREROBIRAR. RE—INF 8

S U1

[oclIEN|

N O O

e e e
O W N =R O O 0

16

@LWIMIER
g KRER: W

.rc_type = RC _TYPE NEC,
.name = RC_MAP_AW NEC,

};

(1 38R
B £ Linux-5.4 R%M SDK $3&% rc-aw-nec.c Xt

3.3 RC 1&&IKE]

RC (Remote Control) i&&Izhfazx@ RC Core IREMH RAW 3R, LUKISLIIMNIIETES!

BIMSGEFRE S E S X%, RC iI&&EH rc_dev £###R (include/media/rc-core.h) :

Linux-4.9:
struct rc_dev {

struct device dev;
atomic t initialized;
const struct attribute group *sysfs groups[5];
const char *input name;
const char *input phys;
struct input_id input_id;
char *driver_name;
const char *map name;
struct rc_map rc_map;
struct mutex lock;
unsigned int minor;
struct ir_raw_event ctrl *raw;
struct input dev *input .dev;
enum rc_driver type driver type;
bool idle;
u64 allowed protocols;
u64 enabled protocols;
ub4d allowed wakeup protocols;
ub4 enabled wakeup protocols;
struct rc scancode,filtens scancode filter;
struct rc_scancode filter scancode wakeup filter;
u32 scancode mask;
u32 users;
void *priv;
spinlock t keylock;
bool keypressed;
unsigned long keyup jiffies;
struct timer list timer keyup;
u32 last_keycode;
enum rc_type last protocol;
u32 last _scancode;
u8 last toggle;
u32 timeout;
u32 min_ timeout;
u32 max_timeout;
u32 rx_resolution;
u32 tx_resolution;
int (*change protocol) (struct rc_dev *dev, u64 *rc type);
int (*change wakeup protocol) (struct rc_dev *dev, u64 *rc type);

IR © HiB2EREROBIRAR. RE—INF

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

OO Uk WN -

WWWWWWWWWWNNNNDNNNNNDNRRRPR PR P PR P PP
O OO U WNRF, O OO UdEd WNRFR, O OO U WNRRL OO

@LWIIWER

XIER . WE
int (*open) (struct rc_dev *dev);
void (*close) (struct rc_dev *dev);
int (*s_tx mask) (struct rc_dev *dev, u32 mask);
int (*s_tx carrier)(struct rc_dev *dev, u32 carrier);
int (*s_tx duty cycle)(struct rc_dev *dev, u32 duty cycle);
int (*s rx carrier range)(struct rc dev *dev, u32 min, u32 max);
int (*tx_ir)(struct rc_dev *dev, unsigned *txbuf, unsigned n);
void (*s_idle) (struct rc_dev *dev, bool enable);
int (*s_learning_mode) (struct rc_dev *dev, int enable);
int (*s carrier report) (struct rc dev *dev, int enable);
int (*s filter)(struct rc_dev *dev,
struct rc_scancode filter *filter);
int (*s _wakeup filter)(struct rc_dev *dev,
struct rc_scancode filter *filter);
int (*s_timeout) (struct rc_dev *dev,
unsigned int timeout);
}i
Linux-5.4:
struct rc_dev {

struct device dev;

bool managed alloc;

const struct attribute group *sysfs groups[5];

const char *device name;

const char *input phys;

struct input id input id;

const char *driver,name;

const char *map ‘name;

struct rc_map FC_map;

struct mutex lock;

unsignedfint minor;

struct Ar raw_event ctrl *raw;

struct/ input_dev *input dev;

enum rc driver type driver type;

bool idle;

bool encode wakeup;

u64 allowed protocols;

u64 enabled protocols;

ub4 allowed wakeup protocols;

enum rc_proto wakeup protocol;

struct rc_scancode filter scancode filter;

struct rc_scancode filter scancode wakeup filter;

u32 scancode mask;

u32 users;

void *priv;

spinlock t keylock;

bool keypressed;

unsigned long keyup jiffies;

struct timer list timer keyup;

struct timer list timer repeat;

u32 last keycode;

enum rc_proto last protocol;

u32 last _scancode;

u8 last toggle;

u32 timeout;

u32 min_timeout;

u32 max_timeout;

u32 rx_resolution;

WRiFE © HELERRRHDBIRATE, RE—IF 10

@LWIMIER

XAEER:

40 u32 tx_resolution;

41 | #ifdef CONFIG LIRC

42 struct device lirc dev;

43 struct cdev lirc cdev;

44 ktime t gap_start;

45 u64 gap_duration;

46 bool gap;

47 spinlock t lirc_fh lock;

48 struct list_head lirc_fh;

49 | #endif

50 bool registered;

51 int (*change protocol) (struct rc_dev *dev, u64 *
rc_proto);

52 int (*open) (struct rc_dev *dev);

53 void (*close) (struct rc dev *dev);

54 int (*s_tx mask) (struct rc_dev *dev, u32 mask);

55 int (*s tx carrier)(struct rc _dev *dev, u32 carrier);

56 int (*s_tx duty cycle)(struct rc_dev *dev, u32
duty cycle);

57 int (*s _rx_carrier _range) (struct rc_dev *dev, u32 min,
u32 max);

58 int (*tx_ir)(struct rc dev *dev, unsigned *txbuf,
unsigned n);

59 void (*s_idle) (struct rc_dev *dev, hool enable);

60 int (*s_learning mode) (struct r€ dev *dev, int enable);

61 int (*s carrier report) (struct.rc dev *dev, int enable
);

62 int (*s filter) (struct, rc dev *dev,

63 struct ‘rc scancode filter *filter);

64 int (*s wakeup filter)(struct rc_dev *dev,

65 struct rc_scancode filter *
filter);

66 int (*s_timeout) (struct rc_dev *dev,

67 unsigned int timeout);

681 };

IREEMAENE:

1| int rc_register_device(struct rc_dev *dev)
void rc unregister device(struet rc dev *dev)

RC ig& MRz T !

1. 28— RC &%, rc allocate device();

2. X RC RE#HIT—LEYAKIRE, B1F input IRENSE, RC REFMNIENAEE, FHN
key map, X IR decoder #i¥;

3. ¥9E28 RC RELWAVMILERNSEIAR rc_register device() ¥#t, UGS lirc %08
REEBELIX rc R FEMBIHAFHITH,

ST R B MBEFIREXZI 3T S, RCIREIRENHRE (driver_type) EX /I RC_DRIVER -
SCANCODE, FAIRLAFREEIERREIGSEM:

1 [void rc_keydown(struct rc dev *dev, enum rc type protocol, u32 scancode, u8 toggle)

IR © HiB2EREROBIRAR. RE—INF 11

@ LWIWER
g MXHEER: WE

W FRERTRBOPINIRE, FRIFER TERBIRSE oMb HERE:

1] int ir raw event store(struct rc dev *dev, struct ir raw event *ev)
2| int ir_raw event store edge(struct rc_dev *dev, enum raw event type type)

F— MR ERFHEDIEF ir raw event &M, FZNRBBSHER— ir raw event 45
¥, BB ERERIE®XIER ir raw event store edge() HREMES|EEfRITE, XM SHE
RC CORE k. AAXAMNRHMEREBEA ir raw event handle() R#/Z5h RC decoder
FFeaHERS,

ir raw event By type SE¥IEEZAAKA, BEEENX !

1] enum raw_event type

214

3 IR SPACE = (1 << 0),
4 IR PULSE =(1<<1),
5 IR START EVENT = (1 << 2),
6 IR STOP_EVENT = (1 << 3),
71}

A B

Linux-5.4 HEGET raw_event type ZMEMTE, MEHA—T bool EMEE pulse, ELIREK
AEIPRRER B ERT :

1] int ir _raw event store edge(struct rc dev *dev, bool pulse)

Ht M RchE RO

1| void rc_repeat(struct rc _dev *dev) J*EE FRiggE */
2| u32 rc_g keycode from table(struct’rc_dev *dev, u32 scancode) /*MkeymapIkiGidfmhaasizmyigsE/

MR RC KEXZFHF IR kiX, FETGERPEIMIT/LNERE, HAP tx ir 7 [R XK,
s tx carrier iRE IR BERIAZE, s tx duty cycle i&E IR #HFH &=L, M NEC 5333 (D
1/3) , XHENAEMA L ioct] R EIIREIXLER $,

1] int (*s_tx carrier)(struct rc dev *dev, u32 carrier);
2| int (*s_tx duty cycle)(struct rc_dev *dev, u32 duty cycle);
3| int (*tx ir)(struct rc_dev *dev, unsigned *txbuf, unsigned n);

3.4 RC WELENEEFHRILIE

B, EERAMN, EfMAT input FRHAEM REPEAT i, H%E—/RMA RC core #ikR—1H
#HEMES, RC Core = input FRIUIREMNAVNRESMH, HEH—TENES, ZEMNSE

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 12

@LWIMIER
g MXHEER: WE

B AR IR MIZENIRA SN, ZEEE 250ms(XMEFET input FRFAD rep LERTAIER
INMB) RIZgEXIRE TE—MIEE, XNREBREENBIEER 250ms, HRIREMIIRRES
%, UMBRRBNESH input RALIE,

[3588

Mgt T EREBIERRBHIRG, FHEBRRGERBRTNMAZS (BAERTHRANSBENS, BEEXKSFH,
MARNAEEEXRES) .

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 13

@ LWIWER
g MXHEER: WE

4.1 Kernel menuconfig &

Linux-4.9 5 Linux-5.4 By Kconfig &t AK—#F, FLTES AR TAIZEKNTE Kernel
menuconfig BEE 7%,

4.1.1 Linux-4.9

FERE:

Device Drivers
L>Multimedia support
L >Remote Controller support

BIEER:

1. £ root #&#E F#M1T make kernel menuconfig, # A\ Multimedia support T, EHF
Remote Controller support. Compile Remote Controller keymap modules, & 4-1;

2. # N\ Remote controller decoders TiH, EEMEXZHFH IR Y, LA LIRC interface
driver, BEiE EXNRapiEO, AR A LUARRIKE, & 4-2;

3. # A\ Remote Controller devices, FEFEBE(FFERN RC I8FE, FARAAREEN IR BB
AW, AIUSEF=BNE=/\T, BEHEIFBUTIRART.
(1 388
e R328. R30 FXi%i#% GPIO IR &%), i%3%F SUNXI GPIO IR remote control(Tx/Rx), & 4-3;

e R329 FEMEE%IF SUXNI IR Bz, i%1F SUNXI IR RX remote control W% SUNXI IR TX remote control,
e 4-4;,

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 14

(Auwiner
ISR WE

Multimedia support 7
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <¥Y> includes, <N> excludes, <M> modularizes
features. Press <Esc»<Esc> to exit, <?> for Help, <f> for Search. Legend: [*] built-in
[] excluded <M> module < > module capable

--- Multimedia support
*** Myltimedia core support **#*
[] Cameras/video grabbers support
[] Analog TV support
[] Digital TV support
[] AM/FM radio receivers/transmitters support
software defined radio support
[] Enable advanced debug functionality on Vv4L2 drivers
[] Enable old-style fixed minor ranges on drivers/video devices
% Media drivers *
<*> Compile Remote Controller keymap modules

[*] Remote controller decoders --->
[*] kRemote Controller devices --->
[] Media USB Adapters ----

< > ISE driver
< > EISE driver
% Sypported MMC/SDIO adapters *
< > Cypress firmware helper routines
*** Media ancillary drivers (tuners, sensors, i2c, spi, frontends) #*#*%*

Customise DVB Frontends ---=>
<*> sunxi video encoder and decoder support
<*> google video vp9 decoder support @?

< > AW tsc module support

< > sunxi nna driver E a

4-1: RC RLE R H

ontroller decoders
Arrow keys i nter> selects submenus ---> (or empty submenus ----).
Highlighted eys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. > to exit, <?> for Help, </> for Search. Legend: [*] built-in
< > module/capable

o LIRC bridge

3 decoder for NEC protocol
Enable decoder for RC-5 protocol
Enable decoder for RC6 protocol
Enable decoder for JVC protocol
Enable decoder for Sony protocol
Enable decoder for Sanyo protocol
Enable decoder for Sharp protocol
Enable decoder for MCE keyboard/mouse protocol
Enable decoder for XMP protocol

4-2: decoders EEHRE

WA © BSEERERHERAE. RE—TF 15

(Auwiner

XAEER: W

Arrow keys navigate the menu.
Highlighted letters are hotkeys.

Remote Controller devices

features. Press <Esc><Esc> to exit, <?> for Help, </> for Search.

[] excluded

<M> module < > module capable

<Enter> selects submenus ---> (or empty submenus ----).
Pressing <Y> includes, <N> excludes, <M> modularizes

Legend: [*] built-in

VVV VY VY VY YV YYD

EEMA A A AAAAANAAAMNAAM

features.
[] excluded

Remote Controller devices

ATI / X180 based USB RF remote controls
Hisilicon hix5hd2 IR remote control
soundGraph iMON Receiver and Display
Windows Media Center Ed. eHome Infrared Transceiver
RedRat3 IR Transceiver

Streamzap PC Remote IR Receiver
IgorPlug-USB IR Receiver

IguanaWorks USB IR Transceiver
TechnoTrend USB IR Receiver

Remote Control Loopback Driver

GPIO IR remote control

SUNXI IR RX remote control

SUNXI IR TX remote control

> UNXI GPIO IR remote control(Tx/Rx

E 4-3: GPIO IR ¥=pEcERE

L O T T T S

¥
<¥*>
< >

remote controls
Hisilicon remgte control
SoundGrap
Windows M
RedRat3 I

ransceiver
Receiver
Loopback Driver

SUNXI IR RX remote control
UNXI IR TX remote control]
SUNXI GPIO IR remote control(Tx/Rx)

4-4: SUNXI IR RopfcERmE

4.1.2 Linux-5.4

FeERZ:

IR © HiB2EREROBIRAR. RE—INF

16

(Auwiner
ISR WE

Device Drivers
L >Remote Controller support

BIEER:

1. £ root B&12 F#1T make kernel menuconfig, # X\ Device Drivers, ,.\J: 1% PC 81
R #, aJLUREENMIZE] “Remote Controller support” EIH, AGEHEHNIZER, 1% EE 4-5
FRRYIET,

XEE-—MEMZRTER keymap 8, E-TMERANAEEND, F=1TE2RATERFEEARN
B, FENEATEFIRERD.

N\ Remote controller decoders TiH, EFMEXHEH IR Y, XBiEFEMNZE NEC th
15(, WE 4.6 Fim:

3. REEFEIEEEE), L R528 A, XEMFEAMNE SUNXI IR RX remote control UK
SUNXI IR TX remote control, #1& 4-7 Fix:

] /a 5. e Configuration
> Device Drivers > Rﬂmafu (nfra]]ur support

Remote Controller support
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
<Y> includes, <=N> excludes, <M= modularizes features. Press <Esc><Esc> to exit, =?> for Hel
built-in [] excluded =M= module = = module capable

s are hotkeys. Pressing
ch. Legend: [*]

--- Remote Controller support
Complle Remote Controller keymap modules
LIRC user interface
em oller decoders ---=

er devices ---

/

4-5¢ Linux-5.4 RC BCEE

o _ —
D= yice Driv uafa \nnfrn11=r support > Remote controller decoders
Remote controller decoders i i B
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing

<Y¥> includes, <N= excludes, <M> modularizes features. Press <Esc=<Esc> to exit, <?> for Help, </> for Search. Legend: [*]
built-in [1 excluded <M> module < > module capable

-B- Remote controller decoders
<*> Enable IR raw decoder for the NEC protocol
< > Enable IR raw decoder for the RC-5 protocol

< > Cnable IR raw decoder for the RC6 protocol

< > Enable IR raw decoder for the JVC protocol

< > Enable IR raw decoder for the Sony protocol

< > [nable IR raw decoder for the Sanyo protocol

< > Enable IR raw decoder for the Sharp protocol

< > Enable IR raw decoder for the MCE keyboard/mouse protocol
< = Enable IR raw decoder for the XMP protocol

< > Enable IR raw decoder for the 1MON protocol

< > Enable IR raw decoder for the RC-MM protecol

& 4-6: Linux-5.4 decoders &R H @

WA © BSEERERHERAE. RE—TF 17

SRR R

(:EE;LMHANER
Rem

Arrow keys navigate the menu. <Enter> selects submenus

cas

built-in [] excluded =M= module = > module capable

ubmenus ----). Highlighted letters are hotkeys.

<¥> includes, <N> excludes, <M= modularizes features. Press <Esc=<Esc> to exit, <?> for Help, </> for Search. Legend: [*¥]

Pressing

Remote Controller devices)
ATI / X10 based USB RF remote controls
Hisilicon hixShd2 IR remote control
SoundGraph 1MON Receiver and Display
soundGraph 1MON Receiver (early raw IR models)
Windows Media Center Ed. eHome Infrared Transceiver
FedRat3 IR Transceiver
“PI connected IR LED
“treamzap PC Remote IR Receiver
IgorPlug-USB IR Recelver
IguanawWorks USB IR Transceiver
TechnoTrend USB IR Receliver
Femote Control Loopback Driver
GPIO IR remote control
GPIO IR Bit Banging Transmitter
PWM IR transmitter
SUNXI IR remote control
SUNXI IR RX remote control

< SUNXI IR TX remote control

< = Homebrew Serial Port Receiver

< > Built-in SIR IrDA port

< = Jbox DVD Movie Playback Kit

AAAAAAAAAANAAAAADE
VMV VM WV VYV VY Y Y Y Y Y YD

A
*
W

4-7: Linux-5.4 SUNXI IR JzhAcE R mE

4.2 DTS Bc&

Linux-5.4 5 Linux-4.9 B9 dts BB A—#, TmEH FiEk,

4.2.1 Linux4.9

I R329 evb5:std T#ERHEI, N dts BBEFA:

[tina/lichee/linux-4.9/arch/arm64/boot/dts/sunxi/sunSOiwllpl-dtsi

r 4

IR RzhRVECE 40T

s cir@: s cir@07040000 {
compatible = "allwinner,s cir";
reg = <0x0 0x07040000 Ox0 O0x400>;
interrupts = <GIC SPI 113 IRQ TYPE LEVEL HIGH>;
pinctrl-names = "default","sleep";
pinctrl-0 = <&s cir@ pins a>;
pinctrl-1 = <&s cir® pins b>;
clocks = <&clk hosc>,<&clk cpurcir>;
supply = "";
supply vol = "";
status = "disabled";

};

irl: ir@ox02003000 {
compatible = "allwinner,ir tx";
reg = <0x0 0x02003000 0x0 0x400>;
interrupts = <GIC SPI 19 IRQ TYPE LEVEL HIGH>;

IR © HiB2EREROBIRAR. RE—INF

18

@LW/MIER

XAEER:

clocks = <&clk hosc>, <&clk irtx>;
pinctrl-names = "default","sleep";
pinctrl-0 = <&ir@ pins a>;
pinctrl-1 = <&ir® pins_ b>;

status = "disabled";

};

s_cir0 BIMEWIRATI R, irl BLIMRIXIHEITI R0

T =AY pinctrl-0 5 pinctrl-1 23X EMITAY GPIO 5|HECE, 5 pinctrl B dts X

%R, pinctrl BY dts XHEZEA:

[tina/lichee/linux-4.9/arch/arm64/boot/dts/sunxi/sunSOiwllpl-pinctrl.dtsi

GPIO 5|HIECEWNT:

s cir@ pins a: s cirb@0 {
allwinner,pins = "PL7";
allwinner, function = "s cir@";
allwinner,muxsel = <2>;
allwinner,drive = <1>;
allwinner,pull = <1>;

}i
s cir@ pins b: s cirb@l {
allwinner,pins = "PL7";
allwinner, function = "1io disable";

allwinner,muxsel = <7>;
allwinner,drive = <1>;
allwinner,pull = <1>;

};

ir@ pins a: irb@0 {
allwinner,pins = "PB7";
allwinner, function’= "ir0";

allwinner,muxsel = <2>;
allwinner,drive = <2>;
allwinner,pull = <1>;

}i
ir@ pins b: ir6@l {
allwinner,pins = "PB7";
allwinner, function = "io disabled";

allwinner,muxsel = <7>;
allwinner,drive = <2>;
allwinner,pull = <1>;

4.2.2 Linux-5.4

XEBLL R528 evbl TiEHAI, dts BEA:

[tina/lichee/linux-s.4/arch/arm/boot/dts/sun81w20p1.dtsi

IR © HiB2EREROBIRAR. RE—INF

19

@LWIMIER
: SRR R

IR BECENF:

s cir0:

1

};

irl: ir@2003000 {

s cir@7040000 {

compatible = "allwinner,s cir";

reg = <0x0 0x07040000 O0x0 0x400>;

interrupts = <GIC SPI 151 IRQ TYPE LEVEL HIGH>;

clocks = <&r_ccu CLK R APBO BUS IRRX>, <&dcx024M>, <&r ccu CLK R _APBO IRRX>;

clock-names = "bus", "pclk", "mclk";
resets = <&r ccu RST R APBO BUS IRRX>;
SUpply = n Il;

supply vol = "";

status = "disabled";

compatible = "allwinner,ir tx";

reg = <0x0 0x02003000 0x0 0x400>;

interrupts = <GIC SPI 19 IRQ TYPE LEVEL HIGH>;

clocks = <&ccu CLK BUS IR TX>, <&dcx024M>, <&ccu CLK IR TX>;
clock-names = "bus", "pclk", "mclk";

resets = <&ccu RST BUS IR TX>;

status = "disabled";

(1 3585

dts BEETINE XS Linux-4.9 BRN—, FEE Linux-5.4 B clk pinctr] {E5#17 T1EH, dts BEEEHITEEN
&7,

B9, Linux-5.4 XS RE dts RERERELIINS IC HXNESE, MRS Estit, Heh, hEESHNERE, SIHER
SIRHEREEUTMEW, PIN HREEMABREZLT .

Linux-5.4 4887 sun*iw*pl.pincti-dtsi 9 PINCTRL i dts BEE7T , PIN MEEMTE board.dts H,

boatd.dts FILUEE < cconfigs BkEE, HREH:

&irl {

......... //EfpinElE

s_cir@ pins_a: s_cirf@0 {
pins = "PB1";
function = "ir";
drive-strength = <10>;
bias-pull-up;

+

irl pins a: irl@0 {
pins = "PBO";
function = "ir";

drive-strength = <10>;
bias-pull-up;

18

......... //EfpinftE

{

pinctrl-names = "default";

pinctrl-0 = <&s cir@ pins a>;
status = "disabled";

pinctrl-names = "default";

IR © HiB2EREROBIRAR. RE—INF 20

@LWIMIER
: e B

pinctrl-0 = <&irl pins a>;
status = "disabled";

4.3 71N RC keymap

7£ tina/lichee/linux-4.9/drivers/media/rc/keymaps #1l rc_keymap JEXf, EX IR 13
E5 linux ¥rHEE#E keycode BIMRES, #0 sunxi FEFMB rc-aw-nec.c, EXT NEC ¥
AfES—METSHR NS R, #8532 rc map register i, AP MR driver TE
M IR, AL BEXMEXREE,

%46, £ include/media/rc-map.h F7I0 rc_keymap FIEN, X#E DTS HFAILUERE
NN key BMETR, 30 linux,rc-map-name = “rc-aw-nec”

1 [#define RC_MAP_AW NEC "rc-aw-nec"

WA © BSEERERHERAE. RE—TF 21

@LW/MIER
KRER: W

5.1 XH#T s

RC IRehin#EimkIhfa, 7£ dev FAIUEE lircO &&=, MNAEEE dev/lircO H=H RC i&
FZIRTHIFITEIER B, /sys/class/lirc BR 2 rc WALKXHBER, AIUEIBUTES:

root@TinalLinux:/sys/devices/platform/soc/soc@®3000000:gpio-ir/rc/rco# ls
device inputl lircO power protocols subsystem uevent

& E protocols, FILIADE RC i&&ZFR ir hiX:

root@Tinalinux:/sys/devices/platform/soc/soc@®3000000:gpio-ir/rc/rc@# cat protocols
rc-5 [nec] rc-6 [lirc]

5.2 BEEMHF

R RC g&RHNEAE T RC Decoder, E IR RAW HiERESH AR ARE LR, B3
getevent FILIEE BTSSR FIFIN, HERAUERIIREENRDHEE, &FW0F:

root@Tinalinux:/sys/devices/platform/soc/soc@@3000000:gpio-ir/rc/rc@# getevent
add device 1: /dev/input/event0

name: "sunxi-keyboard"
add device 2: /dev/input/eventl
name: "sunxi gpio_ir"

poll 3, returned 1

/dev/input/eventl: 0004 0004 04fbl3ec /*scan code*/
poll 3, returned 1

/dev/input/eventl: 0001 0002 00000001/*key down*/
poll 3, returned 1

/dev/input/eventl: 0000 0000 000000

poll 3, returned 1

/dev/input/eventl: 0004 0004 04fbl3ec

poll 3, returned 1

/dev/input/eventl: 0000 0000 00000000

poll 3, returned 1

/dev/input/eventl: 0001 0002 00000000/*key up*/
poll 3, returned 1

/dev/input/eventl: 0000 0000 00000000

(1 38R
getevent B— AR input BHHEIBITED input EHEENIA,

IR © HiB2EREROBIRAR. RE—INF 22

N =

Ul s W

@LWIMIER
: SRR R

Tina A/L 5 XM SDK #&EHINE L getevent, 7E Tina 1R B3R Ti& Tmake menuconfig, &L
TEZI

Utilities
L>getevent

5.3 M A

Tina SDK EEESIET RC EZRTH IR RapMiXR B gpio ir test, JRIZEREA: pack-
age/utils/gpio _ir test, £ menuconfig FEE FEIRIfEA, menuconfig EEFIMT:

Utilities
L>gpio ir test

MiNIEFEERES, IR # (RX) M IR X (TX) FE5, HAT gpio_ir test sF<a0TF:

root@Tinalinux:/# gpio ir test
usage: gpio ir test [options]

gpio ir receive test:
gpio ir test rx

gpio ir send test:
gpio ir test tx <code>

gpio ir send testd
gpio_ir /test loop

5.3.1 My IR RX Ihge

M IR RX Ihae, BILAEER{Ts gpio ir test rx, MARERALUEE poll A A rc & &iEEY
IR RAW #E, X# W rILITE user space #17 IR WhiXf#th. IXhEWi#HTTHEM, RC Core &
¥ input EIRERITAVIRIE, IREHSZIFAIIMY, BILLTE menuconfig HITECE. MNRFHEEMNH#
TN EENT, IRTHE TR L IRIRHE,

TARME, XA IR RAW #4E, Bl IR EFAVBKFESE] (ms) =& 32bit R, BRXMGE
BB EIE MK 24bit, HE 8bit ABKHER!, BIZF1iREIH raw event type, X573 BXA
HNEEBEF, @ lirc IRFIEE raw X, SWFIE 2 MUERIEMZBIRIEIRE, MBTLIIML
EmEEN,

fd = open("/dev/lirc0", O RDWR);
if (fd < 0) {
printf("can't open lirc0® recv, check driver!\n");
return 0;
} else {

IR © HiB2EREROBIRAR. RE—INF 23

10
11
12
13
14
15
16
17
18

@LWIIWER

XAEER:

printf("lircO® open succeed.\n");

if (!strcmp(argv[1], "rx")) {

if (err '= 0) {

printf("create pthread error: %d\n", LINE);
goto OUT;

}

do {
usleep(1000);

} while (!int exit);

}
void *ir recv_thread(void *arg)
{
int size = 0, size t = 0;
int i = 0;
int dura;
int ret;
int total = 0;
poll fds[0].fd = fd;
poll fds[0].events = POLLIN | POLLERR;
poll fds[O].revents = 0;
while (!int exit) {
ret = poll(poll fds, 1, 12);
if (lret) {
//priaikf ("time oUE\n")§
printf(™\n--5=---F4_tr------ \n");
total = 0;
} else {
if (poll fds[0].revents == POLLIN) {
size = nead(fd, (char *)(rx_raw buf),
GPIO IR RAW BUF SIZE);
size t = size / sizeof(uint32 t);
for/(i = 0; 1 < size t; i++) {
dura = rx_raw buf[i] & Oxffffff;
printf("sd ", dura);
if ((total++) % 8 == 0)
printf("\n");
)
)
}
}
return NULL;
}

err = pthread create(&tid, NULL, (void *)ir recv_thread, NULL);

ZRTHIRERSERAEESE TRBERRR L RIXLIMESHITH, &

1

T

7

ME:

root@Tinalinux:/# gpio_ir test rx
This is 5.* linux kernel

1ircO® open succeed.

lircl open succeed.

IR © HiB2EREROBIRAR. RE—INF

24

OO Ul W -

W WWWWNNNNNNNNNNR R R 2 2 2 2 3 2 e
B WNR,OOWONOU R WNROWOWOOWMNOU R WNRO O

@LWIMIER
g KRER: W

8966

4483 556 556 556 567 545 1679 556
556 556 556 556 567 545 567 545

567 556 1669 556 1679 545 567 556
1669 556 1679 556 1679 545 1679 556
1679 556 1669 556 567 545 1679 556
1679 556 1690 556 556 556 556 556
556 556 556 556 1679 556 556 556
556 556 556 556 1679 556 1679 556
1669 556 16306

5.3.2 Mht IR TX Ihge

MIXEZZENIT gpio ir test tx code (4 FT5) , gpio_ir test Mid demo T NEC #&{HY
RiS, MRFELIFHMDIYN, FTHM. HEEEINEEIE LXMW code i3 NEC hilhkH, ARG

Bid write EREE N dev/lircl €& H,

duty cycle = DEFAULT DUTY CYCLE;
if (ioctl(fdl, LIRC.SET=SEND DUTY CYCLE, &duty cycle)) {
fprintf(stderr,
"lircO: could notflset| carrier 'duty: %s\n",
strerror(errno));
goto OUT;

carrier freq = DEFAULT CARRIER FREQ;
if (iectl(fdl, LIRC SET SEND CARRIER, &carrier freq)) {
fprintf(stderr,
"lircO: couldfinot set carrier freq: %s\n",
strerror(eprno));
goto, OUT;

printf("irtest: send key code : 0x%x\n", key code);

size = nec ir encode(tx raw buf, key code);
/*dump the raw data*/
for (1 = 0; 1 < size; i++) {
printf("sd ", *(tx_raw_buf + i) & OxOOFFFFFF);
if ((i + 1) % 8 == 0)
printf("\n");
}
printf("\n");
if (argc > 4 && !strcmp(argv[3], "-n")) {
cnt = atoi(argv[4]);
for (1 = 0; i < cnt; i++) {
size t = size * sizeof(uint32 t);
ret = write(fdl, (char *)tx raw buf, size t);
if (ret > 0)
printf("irtest No.%d: send %d bytes ir raw data\n\n",

IR © HiB2EREROBIRAR. RE—INF

36

OO Ul WN -

e e e e
OO Ul WN —m O ©

@LWIMIER
: KRER: W

i, ret);
usleep(100*1000);

}
} else {

size t = size * sizeof(uint32 t);
ret = write(fdl, (char *)tx raw buf, size t);
if (ret > 0)
printf("irtest: send %d bytes ir raw data\n\n", ret);

gpio ir test RIERHIEIT, HEXMWFTH 0x04fbl3ec, BI—PTEH 4bytes B NEC
code, & key code: 0x13, 7f gpio ir test FLRFIEAEKREKHETE (us) , RIEWH
IR RAW #iERMEAN—¥, & 8bit RERpHEE!, {§ 24bit FBkha{aE],

root@TinalLinux:/# gpio ir test tx Ox04fbl3ec
1ircO® open succeed.

[340.290466] GPIO IR tX: 68 raw samples
send key code : 0Ox4fbl3ec

9000 4500 562 562 562 562 562 1687

562 562 562 562 562 562 562 562

562 562 562 1687 562 1687 562 562

562 1687 562 1687 562 1687 562 1687

562 1687 562 1687 562 1687 562 562

562 562 562 1687 562 562 562 562

562 562 562 562 562 562 562 1687

562 1687 562 562 562 1687 562 1687

562 1687 562 5625

send 272 bytes ir sraw data

5.3.3 Mk IR LOOP IfgE

gpio_ir_testloop FILU#1T IR IERBW, HAXAEIES 0x04fbl3ec, 100ms KiX—IR,
a] LUB TR LI IMBCR R -

key code = 0x04fbl3ec;
err = pthread create(&tid, NULL, (void *)ir recv_thread, NULL);
if (err = 0) {
printf("create pthread error: %d\n", LINE);
goto OUT;
}

duty cycle = DEFAULT DUTY CYCLE;
if (ioctl(fdl, LIRC SET SEND DUTY CYCLE, &duty cycle)) {
fprintf(stderr,
"lircO: could not set carrier duty: %s\n",
strerror(errno));
goto OUT;
)
carrier freq = DEFAULT CARRIER FREQ;
if (ioctl(fdl, LIRC SET SEND CARRIER, &carrier freq)) {

fprintf(stderr,

IR © HiB2EREROBIRAR. RE—INF 26

@LWIMIER

MHER: WE

"lircO: could not set carrier freq: %s\n",
strerror(errno));
goto OUT;

/*echo 50ms transmit one frame */

if (argc > 3 && !strcmp(argv[2], "-n")) {
cnt = atoi(argv[3]);
for (i = 0; i < cnt; i++) {
size = nec_ir encode(tx raw buf, key code);
size t = size * sizeof(uint32 t);

write(fdl, (char *)tx raw buf, size t);

usleep(100*1000) ;
if (int _exit)
break;
h
} else {
i=0;
do {

size = nec ir encode(tx raw buf, key code);
size t = size * sizeof(uint32 t);

write(fdl, (char *)tx raw buf, size t);
usleep(100*1000) ;
} while (!int exit);

printf("send key code : 0x%x, No.%d\n", key code, 1i);

printf("send key code : Ox%x, %d\n", key code, @d++);

B&BIRBIETTR RN TAR:

root@Tinalinux:/# gpio ir test loop
send key code : Ox4fbl3ec, 8 //ir tx
109860

110987 9582 4513 581 608 549 579 580
1681 586 603 578 579 549 579 580

580 549 580 609 1709 548 1678 581
612 547 1738 549 1678 579 1709 579
1743 548 17068 550 1739 548 1709 549
580 581 609 548 1741 548 580 548

614 546 608 549 610548 579 579

1680 578 1711 577 579 549 1709 580
1712 578 1708 549 //ir rx data
send key code : Ox4fbl3ec, 9

110345

110927 9612 4514 549 616 579 580 579
1682 546 609 549 581 579 610 549

580 580 548 610 1709 549 1708 579
582 547 1741 549 1709 579 1708 581
1709 548 1710 580 1707 549 1709 579
551 578 610 548 1741 549 579 549

611 548 610 549 610 549 580 579

1680 609 1708 550 578 579 1709 548
1743 577 1678 549

WA © BSEERERHERAE. RE—TF

27

@LWIMIER
g MXHEER: WE

E{E =R

WRAXFAE © 2021 HKiEEERHRHDBRATE. RE—TIF,

AN RNBEREERUERP, HEENEKELTRERRGERAT (“2F) HEHRZ
_t)J*y*lJo

AR E2SHREFRMRRIM =, RELTFEITFA, FARUMTAFFEEHL. £
fil. B ARVEBRAIEABTHBIHEE, BERSFUEMAPHERE,

(ot

LLWINER LLWINER LLWIMWER'
C 2*?4&\2".:\ *‘I’ *i C (=275

é)ﬂhﬁﬁéuﬂ&kﬁﬁm VBB EEMER. EAEERNTmPHRNEERS
*T’ Fﬂﬂ%ﬂ: ﬂ]ﬂ[ﬁﬁz%ﬂ'\, igﬁﬂﬁ%@ﬁﬁﬁkﬁﬁo

REFNA

BHEO~m. RSFFENZRESHKEEEREROEBRAE (EE") 2EEENHIE
EFMFREILIR AXEPEARN2EHER D ™~ m. RS AFEAIRER A EFr LS fEBEERE
N EARIBIARRIRERFMMAERRA, HREREAXENERNR, ERBTREEH
FAYERITH (BEERRFINEE, 8, BRER) EMNAFER, £EMFARE,

ZISSU‘%H’E?JT@%?“ RESE BT mREARLEMRE, FAXEABTEREEN, 88X
B, BAFTEN. 2EREDNELAXEPREFEHNER, EHFTHERBTT2REHEIR, H
ﬁmzﬁﬁlﬁﬁﬁ?ﬁi#ﬁ% (BEEAFRTEHER. BN, BHHHRK) IRERILE=ZANNE
t, @EHAAT. AEPHFRERFRR. 58 MBINHF AR EARREERERIES &S,

AR UABRRE R R E B th 75 TR T 2 EERET AR~ N BRI R ER ™ mY
HiEd, AIRERERTE =ZFIINFFF BEBTRASEZANFANRBEXNIFA, TR
BUARRAZMAERRTREEZ S AR RZEMRR (TR . 2EFWEMRERNE=
BIFARAMEERRIE. BEFEERMX S,

WRINFE © HRB2ERRRNERAR. RE—IF 28

	概述
	文档简介
	目标读者
	适用范围
	相关术语描述

	红外遥控基础知识
	红外遥控简介
	红外编码协议
	NEC协议特征
	NEC协议编码
	帧格式

	Linux内核RC子系统
	RC Decoders
	RC Keymaps
	RC设备驱动
	RC对按住按键时重复事件的处理

	Sunxi平台IR驱动配置
	Kernel menuconfig配置
	Linux-4.9
	Linux-5.4

	DTS配置
	Linux-4.9
	Linux-5.4

	添加RC keymap

	IR驱动验证
	文件节点
	按键事件
	测试应用
	测试IR RX功能
	测试IR TX功能
	测试IR LOOP功能

