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1 概述

1.1 编写目的
介绍 Allwinner 平台上 Bluetooth 开发。

1.2 适用范围
Allwinner软件平台 Tina v3.0版本以上。Allwinner硬件平台支持 bluez协议栈的蓝牙模组，
包括但不限于 R11，R16，R18，R328，R329，R528，R818，MR813…

1.3 相关人员
适用 Tina 平台的广大客户以及对蓝牙开发感兴趣的同事。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1
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2 Bluetooth 简介

蓝牙技术发展至今已经迭代多个版本，截至目前（2020 年）SIG Bluetooth 规范已经到 V5.2。
蓝牙主要分为两种不同的技术: 经典蓝牙 (Classic Bluetooth，简称 BT) 和蓝牙低功耗（Blue-
tooth Low Energy，简称 BLE）。

蓝牙的工作频率范围是 2400MHz~2483.5MHz, 在经典蓝牙中，将其分为 79 个频道（每个频
道 1MHz），而在蓝牙低功耗中，分为 40 个频道（每个频道 2MHz）。

蓝牙协议从结构上可以分为控制器 (Controller) 和主机 (Host) 两大部分，如下图：

图 2-1: 协议结构图

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2
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Controller 和 Host 大部分情况下是运行在两个不同的芯片上，比如 Controller 运行在
XR829，而 HOST 运行在 R328，两个芯片通过硬件通信接口（如 UART，USB，SDIO）进
行连接和通信，双方的通信协议称为 HCI 协议。

2.1 Bluetooth Controller

Controller 分为 BR/EDR Controller 和 LE controller，两者的在 PHY 层的信道划分是不一
样的，两部分可以认为是独立的。

2.1.1 BR/EDR Controller

BR/EDR 采用跳频技术，数据传输时，并不是固定的占用 79 个信道中的某一个，而是一定规律
的跳动，这个跟 wifi 的固定信道传输不同；在链路层可以下图几个状态：

图 2-2: BR/EDR 链路状态

其中 synchronization train, synchronization scan 基本不用，

• STANDBY: 一个设备的默认状态, 可以认为是初始的状态。
• CONNECTION: 也就是处于连接的状态, 可以进行数据的交互。我们可以认为它是正常工作的
状态。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3
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• Page: 这个子状态就是我们通常称为的连接, 进行连接/激活对应的 Slave 的操作我们就称为
Page。

• Page Scan: 这个子状态是和 Page 对应的, 它就是等待被 Page 的 Slave 所处的状态, 换句话
说, 若想被 Page 到, 我们就要处于 Page Scan 的状态。

• Inquiry: 这就是我们通常所说的扫描状态, 这个状态的设备就是去扫描周围的设备。
• Inquiry Scan: 这就是我们通常看到的可被发现的设备。体现在上层就是我们在 Android 系统
中点击设备可被周围什么发现, 那设备就处于这样的状态。

2.1.2 LE Controller

LE 在 40 个信道中又可以分为两种信道：连接信道和广播信道。

连接信道用于处于连接状态的蓝牙设备直接通信，与 BR/EDR 一样，都是采用跳频，只不过是在
37 个信道上跳频。

广播信道是用于设备之间进行无连接的广播通信，这些广播通信可以用于蓝牙设备的发现、连接
等操作。LE 可以分为下图的几个状态。
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图 2-3: LE 链路状态

• Standby：链路层不收发报文。
• Advertising：链路层发送广播信道报文，并可能监听以及响应有这些广播信道报文触发的回应
报文。

• Scanning：链路层监听广播者发送的广播信道报文。
• Initiating：链路层监听并响应从特定设备发起的广播信道报文。
• Connection：分为主从设备，有发起态进入连接态的设备为主设备，由广播态进入连接态的为
从设备。

2.1.2.1 LE Device address

LE Device address 可以分为两种类型：Public device address 和 Random device ad-
dress。

（1）Public device address
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在通信系统中，设备地址是用来唯一识别一个物理设备的，如 TCP/IP 网络中的 MAC 地址、传
统蓝牙中的蓝牙地址等。对设备地址而言，一个重要的特性，就是唯一性（或者说一定范围内的
唯一），否则很有可能造成很多问题。蓝牙通信系统也不例外。对经典蓝牙（BR/EDR）来说，
其设备地址是一个 48bits 的数字，称作 “48-bit universal LAN MAC addresses(和电脑的
MAC 地址一样)“。正常情况下，该地址需要向 IEEE 申请（其实是购买）。当然，这种地址分配
方式，在 BLE 中也保留下来了，就是 Public Device Address。Public Device Address 由
24-bit 的 company_id 和 24-bit 的 company_assigned 组成，具体可参考蓝牙 Spec 中相关
的说明（Core_v5.2.pdf：[Vol 2] Part B,Section 1.2）。

（2）Random device address

Random device address 又分为 Static Device Address 和 Private Device Address 两
类。在 BLE时代，只有 Public Device Address还不够，主要 3个原因：首先 Public Device
Address需要向 IEEE购买。虽然不贵，但在 BLE时代，相比 BLE IC的成本，还是不小的一笔
开销；其次：Public Device Address的申请与管理是相当繁琐、复杂的一件事情，再加上 BLE
设备的数量众多（和传统蓝牙设备不是一个数量级的），导致维护成本增大；最后，安全因素。
BLE 很大一部分的应用场景是广播通信，这意味着只要知道设备的地址，就可以获取所有的信
息，这是不安全的。因此固定的设备地址，加大了信息泄漏的风险。为了解决上述问题，BLE 协
议新增了一种地址：Random Device Address，即设备地址不是固定分配的，而是在设备设备
启动后随机生成的。根据不同的目的，Random Device Address分为 Static Device Address
和 Private Device Address 两类。

（a）Static Device Address

图 2-4: Format of static address

Static Device Address 是设备在上电时随机生成的地址，格式如上。46bits 的随机数，可以
很好地解决 “设备地址唯一性” 的问题，因为两个地址相同的概率很小。地址随机生成，可以解决
Public Device Address 申请所带来的费用和维护问题。

特征可以总结为：

• 最高两个 bit 为 “11”。
• 剩余的 46bits 是一个随机数，不能全部为 0，也不能全部为 1。
• 在一个上电周期内保持不变。
• 下一次上电的时候可以改变。但不是强制的，因此也可以保持不变。如果改变，上次保存的连
接等信息，将不再有效。
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（b）Private Device Address

Static Device Address通过地址随机生成的方式，解决了部分问题，Private Device Address
则更进一步，通过定时更新和地址加密两种方法，提高蓝牙地址的可靠性和安全性。根据地址是
否加密，Private Device Address又分为两类，Non-resolvable private address和 Resolv-
able private address。下面我们分别描述。

Non-resolvable private address

图 2-5: Format of non-resolvable private address

Non-resolvable private address 和 Static Device Address 类似。其格式如上，不同之处
在于，Non-resolvable private address 会定时更新。更新的周期称是由 GAP 规定的，称作
T_GAP(private_addr_int) ，建议值是 15 分钟。特征可以总结为：

• 最高两个 bit 为 “00”。
• 剩余的 46bits 是一个随机数，不能全部为 0，也不能全部为 1。
• 以 T_GAP(private_addr_int) 为周期，定时更新。

Resolvable private address

图 2-6: Format of resolvable private address

Resolvable private address 比较有用，格式如上，它通过一个随机数和一个称作 identity re-
solving key (IRK) 的密码生成，因此只能被拥有相同 IRK 的设备扫描到，可以防止被未知设备
扫描和追踪。

• 由两部分组成：高位 24bits 是随机数部分，其中最高两个 bit 为 “10”，用于标识地址类型；
低位 24bits是随机数和 IRK经过 hash运算得到的 hash值，运算的公式为 hash = ah(IRK,
prand)。
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• 当对端 BLE 设备扫描到该类型的蓝牙地址后，会使用保存在本机的 IRK，和该地址中的
prand，进行同样的 hash 运算，并将运算结果和地址中的 hash 字段比较，相同的时候，
才进行后续的操作。这个过程称作 resolve（解析），这也是 Non-resolvable private
address/Resolvable private address 命名的由来。

• 以 T_GAP(private_addr_int) 为周期，定时更新。哪怕在广播、扫描、已连接等过程中，也
可能改变。

• Resolvable private address不能单独使用，因此需要使用该类型的地址的话，设备要同时具
备 Public Device Address 或者 Static Device Address 中的一种。

2.1.2.2 Physical channel

图 2-7: Mapping of PHY channel to physical channel index and channel type

BLE 的信道划分为 0~39，其中 channel 37,38,39 为广播信道，其它为数据信道。
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2.1.2.3 LE 广播通信

从图 3 中我们知道 LE 链路有 5 个状态，其中 Advertising 和 Scanning 是 LE 非常重要的两
个状态，它对蓝牙在未建立连接之前至关重要。

广播通信的数据格式如下：

图 2-8: Advertising physical channel PDU

根据 PDU 中的 Type 字段，我们可以分为以下几个类型：

图 2-9: Advertising type

上图中，重点关注 AdvA，AdvData，ScanRspData。

• AdvA AdvA 字段包含广播者的地址，可以是 public address 也可以是 random address。
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• AdvData 包含了广播者广播的数据内容，长度为 31 字节；
• ScanRspData 包含的是广播者收到 SCAN_REQ 之后回复的广播数据内容。

2.1.2.4 AdvData 和 ScanRspData 格式

图 2-10: Advertising and Scan Response data format

如上图所示，AdvData 和 ScanRspData 格式内容由多个 AD Structure 组成，每个 AD
structure 又细分为 length 和 Data，length 为 AD structure 的长度大小，Data 为数
据内容。数据内容又为为 AD Type 和 AD data。AD Type 和 AD data 有详细内容可参考
https://www.Bluetooth.com/specifications/assigned-numbers/generic-access-profile/
和 [Core Specification Supplement.pdf]。
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图 2-11: Permitted usages for data types
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2.2 Bluetooth HOST

一般情况下蓝牙协议栈的 controller 运行在无线模组上，而 HOST 运行在主控芯片上，所以从
用户的角度我们着重关注 HOST 端。在我们日常生活中，会碰到非常多的使用场景，比如蓝牙播
放音乐，蓝牙鼠标，蓝牙传输文件，蓝牙语音通话，蓝牙 mesh 灯，通过蓝牙定位等等。根据这
些不同的场景需求，SIG 定义了不同的规范（Profile）来支持这些场景下的需求。

根据不同的场景需求定义了不同用户规范（Profile），而 HOST 与 Controller 直接的传输是只
有一个接口线，同时对于 controller 只需要关心数据的收发，不需要关心用户的实际场景，所以
在 HOST 端有了 L2CAP 规范，这样就能屏蔽上层不同用户的协议，达到协议复用的功能，类似
TCP/IP 协议中的传输层。

L2CAP 之上有很多 profile，profile 之间有些是相辅相成的，有些则是完全独立的。根据这些
profile，我们大致可以将其分为 3 大类（参考图 1）。

• 经典蓝牙部分（黄色部分）。
• 蓝牙低功耗部分（紫色部分）。
• mesh 部分（绿色部分）。

具体的 profile 我们在后续章节再进行详细介绍。
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3 Tina 蓝牙协议栈介绍

tina 系统当前使用的是开源的 bluez 协议栈，目前已经完全适配 RTL8723DS，XR829 模组，
如用户需要再使用其他模组，可以重新适配模组相关的硬件驱动即可，如 bt hci uart 驱动。当前
有些模组厂商提供自己私有的协议栈另说。当前的软件结构图如下：

图 3-1: tina 蓝牙协议栈结构图

如上图所示，蓝牙规范的 controller主要是在模组端实现，host端主要是在主控端实现，模组与
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主控通过 uart 进行连接通信。主控芯片（如 R328）主要实现包括 bt uart 驱动，L2CAP，以
及 L2CAP 之上的各种 profile，其中 bt uart 驱动，L2CAP，rfcomm 等基本核心协议主要是
在内核空间实现，其他主要在用户空间。由于开源的 bluez 协议栈主要是实现了基本的 profile，
缺少一些必要组件，用户进行开发可能还需再次进行二次开发如对应蓝牙音乐，bluez仅仅实现了
profile 部分，没有实现音频播放、解码部分，由此 allwinner 为了客户方便，开发完整功能，集
成了 btmanager，并提供 c 语言的 API。

3.1 运行 tina 蓝牙协议栈
tina 蓝牙协议栈运行起来，主要是以下 4 个步骤。

• 蓝牙上电
• 下载 firmware
• 启动 bluez 协议栈
• 启动 btmanager

蓝牙协议栈应用的运行，我们这里是有一个对应的脚本 bt_init.sh，对应 tina 的文件路径如下：

tina3.5之前：
target/allwinner/方案/base-files/etc/Bluetooth/bt_init.sh
tina3.5及之后：
tina/package/allwinner/btmanager/config/realtek_bt_init.sh
tina/package/allwinner/btmanager/config/xradio_bt_init.sh

bt_init.sh 的内容主要为以下：

start_hci_attach()
{

//bt reset pin复位，需提前配置bt 的pin脚，请参考蓝牙上电章节
echo 0 > /sys/class/rfkill/rfkill0/state;
echo 1 > /sys/class/rfkill/rfkill0/state;

//下载firmware，模组初始化
hciattach -n ttyS1 xradio >/dev/null 2>&1 &

//启动bluez协议栈
/etc/Bluetooth/Bluetoothd start

}
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3.1.1 蓝牙上电

图 3-2: 主控与 bt 硬件连接简图

bt 工作需要满足以下几个条件。

• 供电：蓝牙供电一般需要两路电源，一路为主电源，另一路用于 IO 上拉电源。
• 复位：需要对 BT-RESETN 进行复位操作。
• AP-WAKE-BT：主要用于使 bt 进行休眠，当 bt 正常工作时，需要输出高电平。
• 接口：主控与 bt大部分数据通信都是通过 uart接口，而部分模组蓝牙语音通话走 pcm接口。
• 24/26MHz 时钟信号。
• 32.768KHz 信号：根据模组而定，有些模组内部通过（5）中的输入的 clk 进行分频得到，有
些需要外部单独输入该信号。

软件上，Bluetooth 需要配置的是供电，AP-WAKE-BT 拉高，BT-RESETN 可进行复位，输出
32khz 信号。关于供电部分，大部分的模组都是 wifi，bt 一体，所以大部分操作同 wifi 一致，
详情可参考《wifi 开发指南》。

以下是 linux 4.9 sysconfig.fex Bluetooth 相关的配置

[uart1]
uart1_used = 1
uart1_type = 4
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uart1_tx = port:PG06<2><1><default><default>
uart1_rx = port:PG07<2><1><default><default>
uart1_rts = port:PG08<2><1><default><default>
uart1_cts = port:PG09<2><1><default><default>
[uart1_suspend]
uart1_tx = port:PG06<7><1><default><default>
uart1_rx = port:PG07<7><1><default><default>
uart1_rts = port:PG08<7><1><default><default>
uart1_cts = port:PG09<7><1><default><default>

[bt]
bt_used = 1
compatible = "allwinner,sunxi-bt"
clocks = "losc_out"
bt_rst_n = port:PE04<1><default><default><0>

[btlpm]
btlpm_used = 1
compatible = "allwinner,sunxi-btlpm"
uart_index = 1
bt_wake = port:PE03<1><default><default><1>
bt_hostwake = port:PE00<6><default><default><0>

uart字段：主要配置uart rx，rx，ctx，rtx所使用的gpio pin。
bt字段：主要是配置bt 复位所使用的gpio pin。
btlmp字段： 主要是配置host休眠与唤醒bt，bt唤醒host所使用的gpio pin。

3.2 bluez 协议栈配置
tina目前已经适配了 RTL8723DS，XR829的模组，只需要在 kernel_menuconfig和menu-
config 选上对应的配置即可。

以下列出各个模组 kernel_menuconfig 以及 menuconfig 的选项。

（1）公用配置内核部分：make kernel_menuconfig

[*] Networking support --->
<*> Bluetooth subsystem support --->
[*] Bluetooth Classic (BR/EDR) features
//如果需要支持hfp，需要选上下面两个选项
<*> RFCOMM protocol support
[*] RFCOMM TTY support

<*> RF switch subsystem support --->
[ ] RF switch input support //这个不能选
<*> GPIO RFKILL driver

用户空间部分：make menuconfig 配置

Utilities --->
<*> bluez-daemon............................................ Bluetooth daemon
<*> bluez-utils.......................................... Bluetooth utilities

Allwinner --->
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btmanager --->
-*- btmanager-core.................................... Bluetooth manager core
<*> btmanager-demo................................... Tina btmanager app demo

（2）XR829 模组

make kernel_menuconfig 配置

[*] Networking support --->
<*> Bluetooth subsystem support --->
Bluetooth device drivers --->
[*] UART (H4) protocol support
<*> Xradio Bluetooth sleep driver support
<*> Xradio Bluetooth farmware debug interface support
[*] Xradio protocol support
[*] Hfp audio over pcm

make menuconfig 配置

Kernel modules--->
Wireless Drivers--->
<*> kmod-net-xr829................................... xr829 support (staging)
<*> kmod-net-xrbtlpm......................... xradio bt lpm support (staging)

Firmware--->
<*> xr829-firmware..................................... Xradio xr829 firmware
[ ] xr829 with 40M sdd //如果是40M晶振，需要选择上。

（2）RTL8723DS 模组

make kernel_menuconfig 配置

[*] Networking support --->
<*> Bluetooth subsystem support --->
Bluetooth device drivers --->
[*] Realtek Three-wire UART (H5) protocol support
<*> HCI UART driver
[*] UART (H4) protocol support
[*] Hfp audio over pcm //如果支持hfp over pcm选上

make menuconfig 配置

Kernel modules--->
Wireless Drivers--->
<*> kmod-net-rtl8723ds........................... RTL8723DS support (staging)

Firmware--->
<*> r8723ds-firmware.............................. RealTek RTL8723DS firmware

Utilities --->
rtk_hciattach --->
<*> rtk_hciattach................... Realtek BT HCI UART initialization tools
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4 经典蓝牙

开源的 bluez 协议栈，并不能满足用户的需求，它还是缺少众多组件，因而 btmanager 应运而
生。本章节开始重点介绍 btmanager 经典蓝牙部分 API 使用，当前支持情况如下：

• GAP
• A2DP Source
• A2DP sink
• AVRCP
• HFP client(针对 HFP over pcm)

4.1 GAP

GAP（Generic Access Profile）是一个基础的蓝牙 profile，用于提供蓝牙设备的通用访问功
能，包括设备的发现、连接、鉴权、服务发现等等。

GAP 是所有其它应用模型的基础，它定义了在 Bluetooth 设备间建立基带链路的通用方法。还
定义了一些通用的操作，这些操作可供引用 GAP 的应用模型以及实施多个应用模型的设备使用。
GAP确保了两个蓝牙设备（不管制造商和应用程序）可以通过 Bluetooth技术交换信息，以发现
彼此支持的应用程序。

4.2 A2DP

为了利用蓝牙异步无连接链路传输高质量的音频数据，蓝牙 SIG 发布了高级音频分发规范（Ad-
vanced Audio Distribution Profile, A2DP）。A2DP 典型的应用是音乐播放器将音频数据发
送耳机或者音箱。当前 A2DP 仅仅定义了点对点的音频分发，没有定义广播式的音频分发。
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图 4-1: A2DP 传输结构

发送音频数据那一端我们称为 Souce 端（比如手机），接收音频的那一端我们称为 Sink 端（比
如蓝牙音箱）。A2DP是建立在 AVDTP之上的，AVDTP实现实体通过 L2CAP分组进行 audio
数据流的传输和 audio 信令的交换，信令提供数据刘的发现、配置、建立和传输控制等功能，可
以理解为 AVDTP 是 A2DP 更基础的协议。

图 4-2: A2DP 传输例子

A2DP 可以分为 A2DP Source 和 A2DP Sink，音频发送端称为 A2DP Souce，数据接收端称
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为 A2DP Sink。

4.3 AVRCP

AVRCP 是蓝牙音频实现蓝牙无线遥控功能的规范。

图 4-3: AVRCP 框架

AVRCP中定义了两种设备角色：Controller（控制器，CT）、Target（目标机，TG）。CT是
发起命令传输给到 TG的宿主，比如个人电脑、PDA、手机等。TG是接收命令的宿主，比如蓝牙
耳机、TV 等。
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图 4-4: AVRCP 示例

AVRCP 中分为四种指令：

• Unit info: 用来获取 AV/C 设备的整体信息。
• Subunit info：用来获取 AV/C 设备的子设备信息。
• Vendor Dependent：厂商自定义的 AV/C 指令。
• Pass Through：音频设备使用最多的命令，如播放、暂停、快进、快退、下一曲、上一曲。

4.4 HFP

HFP 可以用做蓝牙语音通话，蓝牙语音通话实际上我们只需要重点关注两个方面：一个是语音通
话的音频走哪里（over pcm 还是 over sco）。另外一个是蓝牙语音通话的指令，称为 AT 指令
（比如电话的接听，挂断，拨号，获取手机信息等等）。
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图 4-5: HFP 框架

（1）蓝牙语音通话音频数据

如上图所示，蓝牙语音通话的音频可以通过 HCI（SCO），也可以直接通过 PCM。

蓝牙语音通话数据走 HCI，数据流通过程是数据从模组端通过 uart 传输给主控，到 host 端后通
过 SCO 链路传输给到上层应用。走 SCO 链路，蓝牙语音通话将与其他 profile 同时占用 hci，
这样对多个 profile 同时存在时有极高要求。

蓝牙语音通话走 PCM，在模组端有单独的 pcm 接口，可以通过 I2S 与主控直接进行连接，蓝牙
语音通话数据就就不需要再通过 HCI，占用带宽。

蓝牙链路层可以分为 ACL（面向无连接），SCO（面向连接）。大部分都是使用 ACL 链路，只
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有蓝牙语音通话用 SCO 链路。而同时当前市面上的模组还支持蓝牙语音通话数据直接过 PCM
（即也不经过 HCI SCO）。

当前我们的 btmanager 主要支持的方式是 hfp audio stream over pcm，没有走 SCO。

4.5 经典蓝牙 API 使用说明
代码位置：

tina/package/allwinner/btmanager

使用示例：

tina/package/allwinner/btmanager/demo

4.5.1 btmanager 数据结构说明

4.5.1.1 log 控制等级

typedef enum btmg_log_level_t {
BTMG_LOG_LEVEL_NONE = 0, //关闭任何打印
BTMG_LOG_LEVEL_ERROR, //只打印错误信息
BTMG_LOG_LEVEL_WARNG, //打印错误和警告信息
BTMG_LOG_LEVEL_INFO, //打印提示信息
BTMG_LOG_LEVEL_DEBUG //打开调试信息

}btmg_log_level_t;

4.5.1.2 BT 状态

typedef enum {
BTMG_STATE_OFF,
BTMG_STATE_ON,
BTMG_STATE_TURNING_ON,
BTMG_STATE_TURNING_OFF,

} btmg_state_t;

数据结构 btmg_state_t 规定了 BT 可能处于的状态。bt_manager_get_state() 可主动获取当
前 BT 的状态。如果注册了 gap_status_cb() 回调函数，BT 状态改变时，会立即回调返回当前
状态。
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4.5.1.3 BT 扫描模式

typedef enum {
BTMG_SCAN_MODE_NONE, //设备不可被发现和连接

BTMG_SCAN_MODE_CONNECTABLE, //可被连接不可被发现
BTMG_SCAN_MODE_CONNECTABLE_DISCOVERABLE,//可被发现可被连接

}btmg_discovery_mode_t;

可被连接不可被发现此种模式一般为已经配对的设备进行直连。

4.5.1.4 BT 绑定状态

typedef enum {
BTMG_BOND_STATE_NONE,
BTMG_BOND_STATE_BONDING,
BTMG_BOND_STATE_BONDED,

} btmg_bond_state_t;

btmg_bond_state_t 规定了 BT 处于的配对状态，通过注册的回调函数 gap_bond_state_cb()
即时返回配对状态。

4.5.1.5 BT A2dp_sink 连接状态

typedef enum {
BTMG_A2DP_SINK_DISCONNECTED,
BTMG_A2DP_SINK_CONNECTING,
BTMG_A2DP_SINK_CONNECTED,
BTMG_A2DP_SINK_DISCONNECTING,

} btmg_a2dp_sink_connection_state_t;

btmg_a2dp_sink_connection_state_t 规定了 a2dp_sink 协议的连接状态，通过注册的回调
函数 a2dp_sink_connection_state_cb() 即时返回连接状态。

4.5.1.6 BT A2dp_sink stream 状态

typedef enum {
BTMG_A2DP_SINK_AUDIO_SUSPENDED,
BTMG_A2DP_SINK_AUDIO_STOPPED,
BTMG_A2DP_SINK_AUDIO_STARTED,

} btmg_a2dp_sink_audio_state_t;

btmg_a2dp_sink_audio_state_t 规定了 a2dp_sink 音频流播放状态，通过注册的回调函
数 a2dp_sink_audio_state_cb() 返回音频播放状态。由于 a2dp_sink 音频状态底层走的
是 AVDTP 协议，部分手机蓝牙协议栈在暂停以后发送暂停状态存在数秒的延迟，因此通过
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a2dp_sink_audio_state_cb() 返回音频播放状态会因手机而异存在暂停状态回调延迟于实际音
频暂停状态数秒的情况。故不推荐使用 a2dp_sink_audio_state_cb() 返回音频播放状态，请使
用基于 AVRCP 协议的 avrcp_play_state_cb() 回调函数获取即时的音频播放状态。

4.5.1.7 BT AVRCP 状态

typedef enum {
BTMG_AVRCP_PLAYSTATE_STOPPED,
BTMG_AVRCP_PLAYSTATE_PLAYING,
BTMG_AVRCP_PLAYSTATE_PAUSED,
BTMG_AVRCP_PLAYSTATE_FWD_SEEK,
BTMG_AVRCP_PLAYSTATE_REV_SEEK,
BTMG_AVRCP_PLAYSTATE_ERROR,

} btmg_avrcp_play_state_t;

btmg_avrcp_play_state_t规定了基于 AVRCP协议返回的音频播放状态，通过注册的回调函数
avrcp_play_state_cb() 即时返回音频播放状态。相比使用 a2dp_sink_audio_state_cb() 返回
音频播放状态，会具有更好的实时性，并且能返回更多的音频状态。

4.5.1.8 BT AVRCP 命令

typedef enum {
BTMG_AVRCP_PLAY,
BTMG_AVRCP_PAUSE,
BTMG_AVRCP_STOP,
BTMG_AVRCP_FASTFORWARD,
BTMG_AVRCP_REWIND,
BTMG_AVRCP_FORWARD,
BTMG_AVRCP_BACKWARD,
BTMG_AVRCP_VOL_UP,
BTMG_AVRCP_VOL_DOWN,

} btmg_avrcp_command_t;

btmg_avrcp_command_t 规定了 API bt_manager_avrcp_command() 可以发送了 AVRCP
命令。

4.5.1.9 BT 音乐信息

typedef struct btmg_track_info_t {
char title[256];
char artist[256];
char album[256];
char track_num[64];
char num_tracks[64];
char genre[256];
char playing_time[256];
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} btmg_track_info_t;

btmg_track_info_t 规定了蓝牙音乐播放切换歌曲，avrcp_track_changed_cb 回调接口返回
的歌曲信息。

4.5.1.10 回调函数

btmg_callback_t 是总回调函数结构体，用户在使用的时候只需要定义一个 btmg_callback_t
类型的函数指针，然后通过调用 bt_manager_preinit() 即可对该指针进行初始化并分配相应的
空间。

typedef struct btmg_callback_t {
btmg_manager_callback_t btmg_manager_cb;
btmg_gap_callback_t btmg_gap_cb;
btmg_a2dp_sink_callback_t btmg_a2dp_sink_cb;
btmg_avrcp_callback_t btmg_avrcp_cb;
btmg_hfp_callback_t btmg_hfp_cb;

}btmg_callback_t;

其中：btmg_manager_cb 用于返回 bt_manager 本身的事件回调，目前仅用于内部测试使
用。btmg_gap_cb 用于返回所有的 GAP 协议相关的事件回调，对应的 btmg_gap_callback_t
定义如下：

typedef struct btmg_gap_callback_t {
bt_gap_status_cb gap_status_cb; /*used for return results of bt_manager_enable and
status of BT*/
bt_gap_discovery_status_cb gap_disc_status_cb; /*used for return discovery status of BT
*/
bt_gap_dev_found_cb gap_dev_found_cb; /*used for device found event*/
bt_gap_update_rssi_cb gap_update_rssi_cb; /*update rssi for discovered and bonded
devices*/
bt_gap_bond_state_cb gap_bond_state_cb; /*used for bond state event*/
bt_gap_ssp_request_cb gap_ssp_request_cb; /*used for ssp request*/
bt_gap_pin_request_cb gap_pin_request_cb; /*used for pin request*/

} btmg_gap_callback_t;

btmg_a2dp_sink_cb 用于返回所有的 a2dp_sink 协议相关的事件回调，对应的定义如下：

typedef struct btmg_a2dp_sink_callback_t {
/*used to report the a2dp_sink connection state*/
bt_a2dp_sink_connection_state_cb a2dp_sink_connection_state_cb;
/*used to report the a2dp_sink audio state, not recommended as mentioned before*/
bt_a2dp_sink_audio_state_cb a2dp_sink_audio_state_cb;
/*used to report the a2dp_sink volume, range: 0~16*/
bt_a2dp_sink_audio_volume_cb a2dp_sink_audio_volume_cb;

} btmg_a2dp_sink_callback_t;

btmg_hfp_callback_t 用于返回 hfp 协议相关事件的回调，对应定义如下：
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typedef struct btmg_hfp_callback_t {
bt_hfp_hs_event_cb hfp_hf_event_cb;

} btmg_hfp_callback_t;

btmg_avrcp_callback_t 用于返回所有的 AVRCP 协议相关的事件回调，对应的定义如下：

typedef struct btmg_avrcp_callback_t {
bt_avrcp_play_state_cb avrcp_play_state_cb;
bt_avrcp_track_changed_cb avrcp_track_changed_cb;
bt_avrcp_play_position_cb avrcp_play_position_cb;

} btmg_avrcp_callback_t;

其中，avrcp_play_state_cb 用于返回当前的播放状态；avrcp_track_changed_cb 在切换歌
曲回即时返回当前播放音乐的信息（设备地址、歌曲名称、歌手名、歌曲专辑名、当前音乐位于
音乐列表的顺序号、总播放列表音乐数、音乐类型、播放总时长）；avrcp_play_position_cb用
于实时返回当前音乐播放的进度（总时长、当前播放时刻。

4.5.2 初始化 API

4.5.2.1 设置打印级别

函数原型 int bt_manager_set_loglevel(btmg_log_level_t log_level)

参数说明 btmg_log_level_t 打印等级类型，详见 4.2.3.1
返回说明 int 0: 成功；-1: 失败。
功能描述 设置 bt_manager 内部打印等级。

4.5.2.2 获取打印级别

函数原型 btmg_log_level_t bt_manager_get_loglevel(void)

参数说明 无。
返回说明 返回当前使用的 btmg_log_level_t 类型打印等级值。
功能描述 获取 bt_manager 内部当前使用的打印等级。

4.5.2.3 预初始化

函数原型 int bt_manager_preinit(btmg_callback_t **btmg_cb)

参数说明 指向 btmg_callback_t 指针类型的指针。
返回说明 int 0: 成功；非 0: 失败。
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函数原型 int bt_manager_preinit(btmg_callback_t **btmg_cb)

功能描述 用于对用户定义的回调函数结构体指针 btmg_callback_t * 进行初始化，用
户也可自行显示地对指针进行初始化。初始化的指针在用户程序 exit 之前必
须调用 bt_manager_deinit() 进行回收。

4.5.2.4 初始化

函数原型 int bt_manager_init(btmg_callback_t *btmg_cb)

参数说明 已经初始化了的回调函数结构体指针 btmg_callback_t *。
返回说明 int 0: 成功；-1: 失败。
功能描述 进行蓝牙的初始化设置（如读取解析配置文件、加载蓝牙协议栈、为内部变量

分配空间、启动内部线程等）。

4.5.2.5 反初始化

函数原型 int bt_manager_deinit(btmg_callback_t *btmg_cb)

参数说明 指向 btmg_callback_t 指针类型的指针。
返回说明 int 0: 成功；非 0: 失败。
功能描述 bt_manager 反初始化。在 bt_manager 蓝牙应用程序退出前必要进行的调

用，用以退出内部线程、保存配置文件、恢复内部状态等。

4.5.3 GAP 协议 API

4.5.3.1 设置模式

函数原型 int bt_manager_set_discovery_mode(btmg_discovery_mode_t mode)

参数说明 btmg_discovery_mode_t mode：BT 设备扫描模式（详见 4.2.3.3）。
返回说明 int 0: 成功；-1: 失败。
功能描述 设置本地 BT 设备扫描模式。

4.5.3.2 profile 默认使能
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函数原型 int bt_manager_set_enable_default(bool is_default)

参数说明 bool is_default: 在调用 bt_manager_init() 时是否直接默认使能 BT。
true: 默认使能 BT;false: 关闭默认使能。

返回说明 int 0: 成功；非 0: 失败。
功能描述 在调用 bt_manager_init() 时是否直接默认使能 BT。第一次启动 BT，只有

在 bt_manager_init() 之前设置有效。后续在用户调用 bt_manager 的进程
未退出的情况下该设置一直有效。

4.5.3.3 蓝牙使能

函数原型 int bt_manager_enable(bool enable)

参数说明 bool enable: true: 使能 BT；false: 关闭 BT。
返回说明 int 0: 成功；非 0: 失败。
功能描述 使能/关闭 BT。

4.5.3.4 配对回复确认

函数原型 int bt_manager_set_auto_ssp_reply(bool auto_reply)

参数说明 bool auto_reply: 是否自动回复 ssp 配对请求。true: 使能自动回复 ssp 请
求;false: 关闭使能自动回复 ssp 请求。

返回说明 int 0: 成功；-1: 失败。
功能描述 在用户调用 bt_manager 的进程未退出的情况下该设置一直有效。目前初始

化版本未将该设置写入配置文件，后续版本更新会将该设置保存到配置文件。

4.5.3.5 配对自动回复

函数原型 int bt_manager_set_auto_pin_reply(bool auto_reply)

参数说明 bool auto_reply: 是否自动回复 pin 码配对请求。true: 使能自动回复 pin
码配对请求;false: 关闭使能自动回复 pin 码配对请求。

返回说明 int 0: 成功；-1: 失败。
功能描述 在用户调用 bt_manager 的进程未退出的情况下该设置一直有效。目前初始

化版本未将该设置写入配置文件，后续版本更新会将该设置保存到配置文
件，（用户调用 bt_manager 是否退出的情况下都）将永久有效。
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4.5.3.6 启动扫描

函数原型 int bt_manager_start_discovery(void)

参数说明 无。
返回说明 int 0: 成功；-1: 失败。
功能描述 发起 BT 扫描。扫描状态通过 gap 回调函数 gap_disc_status_cb() 即时返

回。

4.5.3.7 停止扫描

函数原型 int bt_manager_cancel_discovery(void)

参数说明 无。
返回说明 int 0: 成功；-1: 失败。
功能描述 取消 BT 扫描。扫描状态通过 gap 回调函数 gap_disc_status_cb() 即时返

回。

4.5.3.8 判断是否在扫描状态

函数原型 bool bt_manager_is_discovering()

参数说明 无。
返回说明 bool true:BT 扫描中；bool false:BT 未扫描。
功能描述 设置 bt_manager 内部打印等级。

4.5.3.9 蓝牙配对

函数原型 int bt_manager_pair(char *addr)

参数说明 无。
返回说明 btmg_log_level_t 打印等级类型，详见 4.2.3.1。
功能描述 设置 bt_manager 内部打印等级。

4.5.3.10 取消配对
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函数原型 int bt_manager_unpair(char *addr)

参数说明 char *addr: 需要取消配对的 BT 设备地址。。
返回说明 int 0: 成功；非 0: 失败。
功能描述 取消 BT 配对。配对状态通过 gap 回调函数 gap_bond_state_cb() 即时返

回。

4.5.3.11 获取状态

函数原型 btmg_state_t bt_manager_get_state()

参数说明 无。
返回说明 btmg_state_t 类型蓝牙状态。
功能描述 获取 BT 状态。

4.5.3.12 获取本地蓝牙名称

函数原型 int bt_manager_get_name(char *name, int size)

参数说明 char *name: 用于保存 bt_name 的指针。int size: 用于保存 bt_name 空
间的大小。空间大小推荐设置 MAX_BT_NAME_LEN+1。

返回说明 int 0: 成功；非 0: 失败。。
功能描述 获取本地 BT 设备名称。

4.5.3.13 设置本地蓝牙名称

函数原型 int bt_manager_set_name(char *name)

参数说明 char *name: 用于设置的 BT 名称。字符串长度不能超过
MAX_BT_NAME_LEN，否则会被截断。

返回说明 int 0: 成功；非 0: 失败。。
功能描述 设置本地 BT 设备名称。

4.5.3.14 获取 mac 地址
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函数原型 int bt_manager_get_address(char *addr, int size)

参数说明 char *addr: 用于保存本地 BT 设备地址的指针;int size: 用于保存 BT 地址
空间的大小。空间大小推荐设置 MAX_BT_ADDR_LEN+1。

返回说明 int 0: 成功；非 0: 失败。。
功能描述 获取本地 BT 设备地址。。

4.5.3.15 指定 profile 连接

函数原型 int bt_manager_profile_connect(char *addr,btmg_profile_t profile)

参数说明 addr: 需要连接的蓝牙设备地址；profile: 需要连接的 profile。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 指定 profile 进行连接。

4.5.3.16 指定 profile 断开连接

函数原型
int bt_manager_profile_disconnect(char *addr,btmg_profile_t
profile);

参数说明 addr: 需要断开的蓝牙设备地址；profile: 需要断开的 profile。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 指定 profile 进行断开连接。

4.5.3.17 蓝牙通用连接

函数原型 int bt_manager_connect(const char *addr);

参数说明 addr: 需要连接的蓝牙设备地址。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 蓝牙通用连接，包括对端所有 profile。

4.5.3.18 蓝牙通用断开

函数原型 int bt_manager_disconnect(const char *addr);

参数说明 addr: 需要断开的蓝牙设备地址。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 蓝牙通用断开连接，包括对端所有 profile。
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4.5.3.19 移除设备

函数原型 int bt_manager_remove_device(const char *addr);

参数说明 addr: 需要断开的蓝牙设备地址。
返回说明 int 0: 成功；非 0: 失败。。
功能描述移 除掉指定蓝牙设备，如果是连接的设备，会将其断开，然后再将删除其配对信

息，下次对端设备连接需要重新配对。

4.5.4 A2dp sink 协议相关 API

A2DP Sink没有相关 API，已经在 btmanager内部实现，用户不需要关心，用户要使用 A2DP
sink，只需要在使能 profile 的时候使能 A2DP Sink 即可。

4.5.5 A2dp Source API

4.5.5.1 初始化

函数原型
int bt_manager_a2dp_src_init(uint16_t channels,uint16_t
sampling);

参数说明 channels：音频通道；sampling：音频采样率
返回说明 int 0: 成功；非 0: 失败。。
功能描述 初始化

4.5.5.2 反初始化

函数原型 int bt_manager_a2dp_src_deinit(void);

参数说明 无
返回说明 int 0: 成功；非 0: 失败。。
功能描述 不使用的时候，进行反初始化

4.5.5.3 开始启动播放
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函数原型 int bt_manager_a2dp_src_stream_start(uint32_t len);

参数说明 len：内部每次写入蓝牙协议栈的数据长度
返回说明 int 0: 成功；非 0: 失败。。
功能描述 开始启动播放

4.5.5.4 发送音频数据

函数原型 int bt_manager_a2dp_src_stream_send(char *data,int len);

参数说明 data: 数据，len：发送的数据长度
返回说明 int 0: 成功；非 0: 失败。。
功能描述 发送音频数据

4.5.5.5 停止播放

函数原型 bt_manager_a2dp_src_stream_stop(void);

参数说明 无
返回说明 int 0: 成功；非 0: 失败。。
功能描述 停止播放

4.5.6 AVRCP API

4.5.6.1 音频控制

函数原型
int bt_manager_avrcp_command(char *addr,
btmg_avrcp_command_t command)

参数说明 需要控制的设备的地址；命令。
返回说明 int 0: 成功；非 0: 失败。
功能描述 AVRCP 控制。

btmg_avrcp_command_t 类型 AVRCP 命令:

BTMG_AVRCP_PAUSE：暂停播放；

BTMG_AVRCP_STOP：停止播放；

BTMG_AVRCP_FASTFORWARD：快进；
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BTMG_AVRCP_REWIND：快退；

BTMG_AVRCP_FORWARD：下一首；

BTMG_AVRCP_BACKWARD：前一首；

BTMG_AVRCP_VOL_UP：调高音量；

BTMG_AVRCP_VOL_DOWN：调低音量；

4.5.6.2 音量控制

函数原型 int bt_manager_vol_changed_noti(char *vol_level)

参数说明 char *vol_level: 需要设置的音量等级。设置范围为 “0”~“16”。
返回说明 int 0: 成功；非 0: 失败。
功能描述 设置绝对音量等级。

4.5.7 HFP API

4.5.7.1 接听电话

函数原型 int bt_manager_hfp_client_send_at_ata(void)

参数说明 char *vol_level: 需要设置的音量等级。设置范围为 “0”~“16”。
返回说明 int 0: 成功；非 0: 失败。
功能描述 设置绝对音量等级。

4.5.7.2 拒接或挂断电话

函数原型 int bt_manager_hfp_client_send_at_chup(void)

参数说明 char *vol_level: 需要设置的音量等级。设置范围为 “0”~“16”。
返回说明 int 0: 成功；非 0: 失败。
功能描述 设置绝对音量等级。

4.5.7.3 指定号码拨号
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函数原型 int bt_manager_hfp_client_send_at_atd(char *number)

参数说明 number：想要拨打的电话号码
返回说明 int 0: 成功；非 0: 失败。
功能描述 指定电话号码拨号

4.5.7.4 拨打上一次电话

函数原型 int bt_manager_hfp_client_send_at_bldn(void)

参数说明 无
返回说明 int 0: 成功；非 0: 失败。
功能描述 播打上一次播打过的电话

4.5.7.5 获取本机号码

函数原型 int bt_manager_hfp_client_send_at_cnum(void)

参数说明 无
返回说明 int 0: 成功；非 0: 失败。
功能描述 获取本机号码，本机号码将通过回调函数返回

4.6 API 调用指南
根据 4.5 章节 API，编写了使用示例，供用户参考，主要的代码路径如下：

package/allwinner/btmanager/demo

├── bt_cmd.c API调用示例
├── bt_cmd.h
├── bt_test.c main入口
└── Makefile 编译Makefile

经典蓝牙 API 的使用可以总结为以下几步，(可参考 bt_test.c::_bt_init)：

• 设置打印级别：bt_manager_set_loglevel。
• 预初始化：bt_manager_preinit，运行期间只需要调用一次。
• 初始化回调函数：主要是填充 btmg_callback_t 结构体
• 使能需要的 profile：bt_manager_enable_profile，如果没有定制化，将默认从 Blue-
tooth.json 文件 profile 条目中读取使能默认的 profile。

• 经典蓝牙初始化：bt_manager_init。
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• 分配绑定和扫描的存储结构。
• 经典蓝牙使能：bt_manager_enable。
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5 蓝牙低功耗

蓝牙低功耗对应的 profile 是 GATT（Generic Attribute profile），从第 2 章节图 1 中我们
知道 GATT 规范是基于 ATT 协议（Attribute Protocol）实现的。ATT 的通信模型遵循 C/S 模
型，包括 Server 与 Client。

5.1 Attribute

一台设备如果作为 gatt server 端，在 server 端可以有很多服务，比如心率服务，血压服务，电
量服务等等，而服务的基本组成单元是 Attribute（属性）。

图 5-1: Attribute

属性（Attribute）是服务的基石，Attribute 的数据包类型如上图，包含了四种元素：

• Attribute Handle
• Attribute Type
• Attribute Value
• Attribute Permissions

5.1.1 Attribute Type

Attribute Type 由 UUID 唯一标识，SIG 蓝牙联盟规定一些 UUID 代表特定的类
型，比如 0x180D 代表 Heart Rate，0x1810 代表 Blood Pressure 等等（可参考：
https://www.Bluetooth.com/specifications/gatt/services/）。

128 位的 UUID 相当长，设备间为了识别数据类型需要发送长达 16 字节的数据，为了提高效
率，SIG 定义了 “蓝牙 UUID 基数” 的 128 位通用唯一标示码，结合一个较短的 16 位数使用，
因此在实际传输的时候是 16 位的 uuid，在收发后补上蓝牙 UUID 基数即可。
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如蓝牙基数如下：

00000000-0000-1000-8000-00805F9B34FB

需要发送的 16 位识别码为 0x2A01，完整的 128 位 UUID 便是：

00002A01-0000-1000-8000-00805F9B34FB

UUID 可以分为以下几组：

• 0x1800 ~ 0x26FF 用作服务类型通用唯一识别码
• 0x2700～0x27FF 用作标示计量单位
• 0x2800~0x28FF 用于区分属性类型
• 0x2900～0x29FF 用作特性描述
• 0x2A00～0X7FFF 用于区分特性类型

5.1.2 Attribute Handle

设备中有许多服务，而服务有许多属性组成，比如温度传感器服务包含温度属性、设备名称属
性、电池电量属性等等，这些属性似乎可以通过 Attribute Type 来作于区分，但是如果温度属性
有分为室内温度属性和室外温度属性，这样就没法通过 Attribute Type 来进行区分了，为了解决
这个问题引入了 Attribute Handle，属性句柄。有效的属性句柄取值范围 0x0001~0xFFFF。

5.1.3 Attribute Value

Attribute Value 是实际属性的值，比如玩温度传感器服务中温度属性温度是多少度。

5.1.4 Attribute Permissions

Attribute 具有一组与之关联的权限值。权限值指定了关联属性是否具备读写、安全权限。一般有
以下几种类型：

• Readable
• Writeable
• Readable and writable
• Encryption required
• No encryption required
• Authentication Required
• No Authentication Required
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以上主要是关于属性四种元素的介绍，总结下 GATT profile 常见的属性定义，如下：

图 5-2: GATT Profile attribute types

5.2 GATT

GATT 是基于 ATT 协议规范，所以 GATT 遵循 C/S 通信模型，包括 GATT server 和 GATT
client。双方数据的传输方式分为以下 4 类：

• Client Request read
• Client Request write
• Server Notify
• Server Indication
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图 5-3: gatt 通信模型

其中 Server Notify 和 Server Indication 的区别是前者 server 发送数据给 client 端不需要
client 回复，后者是需要 client 端回复。

5.3 GATT Server

前面说了，一个设备中可能有很多个服务，而服务一般具备一定的格式，服务的内容由属性（At-
tribute）构成。一个设备的服务结构组成如下图：
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图 5-4: gatt server 模型

GATT profile 的层次结构依次为 Profile->Service->Characteristic，“profile” 是基于
GATT 所派生的真正 profile, 位于 GATT profile hierarchy 最顶层, 有一个或者多个和某一应
用的场景有关的 service 组成。

GATT server 是一系列数据和相关行为组成的集合，为了完成某个功能或特性。一个 service
包含一个或者多个 Characteristic, 也可以通过 include 的方式, 包含其他 service. 所有一个
server 的属性类型可以分为以下几类：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 42



文档密级：秘密

• Primary Service
• Secondary Service
• Include
• Characteristic

大部分情况下，我们可能只会用到 Primary Service 和 Characteristic。Primary service 是
用于区分不同的 service，比如上图中有两个 service。一个 service 开头的 uuid 一般固定为
0x2800，其 value 值将用于表征这是那一类 service，同时将结束于下一个 0x2800。

Characteristic 则是 GATT profile 最基本的数据单位, 由一个 properties, 一个 value, 一个或
者个 Description 组成。

• Characteristic Properties 定义了 Characteristic 的 value 如何被使用, 以及 Character-
istic 的 descriptor 如何被访问。

• Characteristic value 是特征的实际值, 例如一个温度特征, 就是温度值。
• Characteristic descriptor 则保存了一些和 Characteristic value 相关的信息。比如温度的
单位是什么表征的。

注意：server 中的每一个定义,service,Characteristic,Characteristic Properties, Charac-
teristic value,Characteristic descriptor 等等, 都是通过 Attribute 来进行表征的。

下图是实际一个 service 的例子：
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图 5-5: weight service
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5.4 GATT Server API 介绍
当前 btmanager 仅仅支持 gatt server 部分，后续会再逐渐支持 gatt client。

5.4.1 GATT Server 常见的数据结构

5.4.1.1 characteristic properties

typedef enum {
BT_GATT_CHAR_PROPERTY_BROADCAST = 0x01,
BT_GATT_CHAR_PROPERTY_READ = 0x02,
BT_GATT_CHAR_PROPERTY_WRITE_NO_RESPONSE = 0x04,
BT_GATT_CHAR_PROPERTY_WRITE = 0x08,
BT_GATT_CHAR_PROPERTY_NOTIFY = 0x10,
BT_GATT_CHAR_PROPERTY_INDICATE = 0x20,
BT_GATT_CHAR_PROPERTY_AUTH_SIGNED_WRITE = 0x40

} gatt_char_properties_t;

5.4.1.2 Characteristic descriptor properties

typedef enum {
BT_GATT_DESC_PROPERTY_BROADCAST = 0x01,
BT_GATT_DESC_PROPERTY_READ = 0x02,
BT_GATT_DESC_PROPERTY_WRITE_NO_RESPONSE = 0x04,
BT_GATT_DESC_PROPERTY_WRITE = 0x08,
BT_GATT_DESC_PROPERTY_NOTIFY = 0x10,
BT_GATT_DESC_PROPERTY_INDICATE = 0x20,
BT_GATT_DESC_PROPERTY_AUTH_SIGNED_WRITE = 0x40

} gatt_desc_properties_t;

5.4.1.3 Attribute Permissions

typedef enum {
BT_GATT_PERM_READ = 0x01,
BT_GATT_PERM_WRITE = 0x02,
BT_GATT_PERM_READ_ENCYPT = 0x04,
BT_GATT_PERM_WRITE_ENCRYPT = 0x08,
BT_GATT_PERM_ENCRYPT = 0x04 | 0x08,
BT_GATT_PERM_READ_AUTHEN = 0x10,
BT_GATT_PERM_WRITE_AUTHEN = 0x20,
BT_GATT_PERM_AUTHEN = 0x10 | 0x20,
BT_GATT_PERM_AUTHOR = 0x40,
BT_GATT_PERM_NONE = 0x80

} gatt_permissions_t;
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5.4.1.4 回调函数与参数相关结构体

（1）回调函数

typedef struct {
bt_gatt_add_service_cb gatt_add_svc_cb; //增加一个service的回调函数
bt_gatt_add_char_cb gatt_add_char_cb; //增加一个characteristic的回调函数
bt_gatt_add_desc_cb gatt_add_desc_cb; //增加一个descriptor的回调函数

bt_gatt_connection_event_cb gatt_connection_event_cb; //gatt连接和断开事件回调函数
bt_gatt_sevice_ready_cb gatt_service_ready_cb; //gatt启动service成功后回调该函数

bt_gatt_char_read_req_cb gatt_char_read_req_cb; //
bt_gatt_char_write_req_cb gatt_char_write_req_cb;
bt_gatt_char_notify_req_cb gatt_char_notify_req_cb;

bt_gatt_desc_read_req_cb gatt_desc_read_req_cb; //client读xuansdescriptor回调函数
bt_gatt_desc_write_req_cb gatt_desc_write_req_cb;//client写descriptor回调函数

bt_gatt_send_indication_cb gatt_send_indication_cb;//service通知或指示回调函数
} gatt_server_cb_t;

（2）回调的参数

gatt server 连接事件

typedef enum {
BT_GATT_CONNECTION,
BT_GATT_DISCONNECT,

} gatt_connection_event_t;

增加一个 Characteristic 回调函数参数

typedef struct {
int num_handle; //service中一共有多少个handle
int svc_handle; //表征service的handle

} gatt_add_svc_msg_t;

增加一个 server 回调函数参数

typedef struct {
char *uuid;
int char_handle;

} gatt_add_char_msg_t;

增加一个 descriptor 回调函数参数

typedef struct {
int desc_handle;

} gatt_add_desc_msg_t;

client 读请求回调函数参数
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typedef struct {
unsigned int trans_id;
int attr_handle;
int offset; //大量数据读取的偏移
bool is_blob_req; //是否大量数据读取，client端对一次大量数据读取可以分多次完成

} gatt_char_read_req_t;

client 写请求回调函数参数

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset;
char value[AG_GATT_MAX_ATTR_LEN];
int value_len;
bool need_rsp;
/*是否需要回复，client如果是write req是需要回复的，如果是write cmd不需要回复。*/

} gatt_char_write_req_t;

descriptor 读请求回调函数参数

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset;
bool is_blob_req;

} gatt_desc_read_req_t;

descriptor 写请求回调函数参数

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset;
char value[AG_GATT_MAX_ATTR_LEN];
int value_len;
bool need_rsp;

} gatt_desc_write_req_t;

5.4.1.5 服务注册相关结构体

增加一个服务函数的参数类型

typedef struct {
char *uuid; /*128-bit service UUID*/
bool primary; /* If true, this GATT service is a primary service */
int number;

} gatt_add_svc_t;

增加一个 characteristic 函数的参数类型
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typedef struct {
char *uuid; /*128-bit characteristic UUID*/
int properties; /*The GATT characteristic properties*/
int permissions; /*The GATT characteristic permissions*/
int svc_handle; /*the service atr handle*/

} gatt_add_char_t;

增加一个 descriptor 函数的参数类型

typedef struct {
char *uuid; /*128-bit descriptor UUID*/
int properties; /*The GATT descriptor properties*/
int permissions; /*he GATT descriptor permissions*/
int svc_handle;

} gatt_add_desc_t;

启动一个 service 函数的参数类型

typedef struct {
int svc_handle;

} gatt_star_svc_t;

停止一个 service 函数的参数类型

typedef struct {
int svc_handle;

} gatt_stop_svc_t;

删除一个 service 函数的参数类型

typedef struct {
int svc_handle;

} gatt_del_svc_t;

service 回复 client 读操作函数的参数类型

typedef struct {
unsigned int trans_id;
int status;
int svc_handle;
char *value;
int value_len;
int auth_req;

} gatt_send_read_rsp_t;

service 回复 client 写操作函数的参数类型

typedef struct {
unsigned int trans_id;
int attr_handle;
gatt_attr_res_code_t state;

} gatt_write_rsp_t;

service 通知 client 的参数类型
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typedef struct {
int attr_handle;
char *value;
int value_len;

} gatt_notify_rsp_t;

service 指示 client 的参数类型

typedef struct {
int attr_handle;
char *value;
int value_len;

} gatt_indication_rsp_t;

5.4.1.6 广播类结构体

gatt 广播数据结构体

typedef struct gatt_adv_data_t {
uint8_t data[31];
uint8_t data_len;

} gatt_adv_data_t;

gatt 回复 scan 广播数据结构体

typedef struct gatt_rsp_data_t {
uint8_t data[31];
uint8_t data_len;

} gatt_rsp_data_t;

gatt 广播属性参数

typedef struct {
uint16_t min_interval;//广播最小时间间隔
uint16_t max_interval;//广播最大时间间隔
gatt_le_advertising_type_t adv_type; //广播类型
gatt_le_addr_type_t own_addr_type; //广播地址
gatt_le_peer_addr_type_t peer_addr_type; //广播对端地址
char peer_addr[18];
uint8_t chan_map;
gatt_le_advertising_filter_policy_t filter;//广播过滤类型

} gatt_le_advertising_parameters_t;

5.4.2 初始化 API

5.4.2.1 gatt server 初始化
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函数原型 int bt_manager_gatt_server_init(gatt_server_cb_t *cb)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 初始化函数

5.4.2.2 gatt server 反初始化

函数原型 int bt_manager_gatt_server_deinit(void)

参数说明 无
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 反初始化

5.4.3 服务注册类函数

5.4.3.1 创建一个服务

函数原型 intbt_manager_gatt_create_service(gatt_add_svc_t *svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 创建一个服务

5.4.3.2 添加一个 characteristic

函数原型 int bt_manager_gatt_add_characteristic(gatt_add_char_t *chr)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 指定服务中添加 characteristic

5.4.3.3 添加一个 descriptor

函数原型 int bt_manager_gatt_add_descriptor(gatt_add_desc_t *desc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
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函数原型 int bt_manager_gatt_add_descriptor(gatt_add_desc_t *desc)

功能描述 指定服务中添加 descriptor

5.4.3.4 启动一个服务

函数原型 int bt_manager_gatt_start_service(gatt_star_svc_t *start_svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 启动 gatt service

5.4.3.5 停止一个服务

函数原型 int bt_manager_gatt_stop_service(gatt_stop_svc_t *stop_svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 停止一个 gattservice

5.4.3.6 删除一个服务

函数原型 int bt_manager_gatt_delete_service(gatt_del_svc_t *del_svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 删除一个 gatt service，删除后如果还要使用，需要重新注册

5.4.4 服务操作类函数

5.4.4.1 回复 client 读请求

函数原型
int bt_manager_gatt_send_read_response(gatt_send_read_rsp_t
*pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
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函数原型
int bt_manager_gatt_send_read_response(gatt_send_read_rsp_t
*pData)

功能描述 client 端读取 server 属性的时候，会激活对应的回调函数，server 通过该
函数回复读请求的内容

5.4.4.2 回复 client 写请求

函数原型 int bt_manager_gatt_send_write_response(gatt_write_rsp_t *pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 client 端写 server 属性的时候，会激活对应的回调函数，server 通过该函

数回复写请求，以通知 client 写是否成功

5.4.4.3 通知 client

函数原型 int bt_manager_gatt_send_notification(gatt_notify_rsp_t *pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 通过该函数通知 client 消息，client 不需要回复

5.4.4.4 指示 client

函数原型 int bt_manager_gatt_send_indication(gatt_indication_rsp_t *pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 通过该函数指示 client 消息，client 需要回复

5.4.5 ble gap API

5.4.5.1 设置随机地址

函数原型 int bt_manager_gatt_set_random_address(void)

参数说明 无
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函数原型 int bt_manager_gatt_set_random_address(void)

返回说明 int 0: 成功；-1: 失败。
功能描述 ble 设备使用随机地址

5.4.5.2 使能广播

函数原型
int bt_manager_gatt_enable_adv(bool enable,
gatt_le_advertising_parameters_t *adv_param)

参数说明 enable: 启动或关闭广播，adv_param：广播属性参数，见 5.4.1.6
返回说明 int 0: 成功；-1: 失败。
功能描述 使能广播

5.4.5.3 设置广播数据

函数原型 int bt_manager_gatt_set_adv_data(gatt_adv_data_t *adv_data)

参数说明 见 5.4.1.6
返回说明 int 0: 成功；-1: 失败。
功能描述 设置广播数据，数据的格式需要按照 2.1.2.4 中的格式要求

5.4.6 总结 API 的使用说明

gatt server API 的使用步骤主要是以下几点

• 初始化 gatt server，调用 bt_manager_gatt_server_init 函数，其功能主要是将蓝牙协议
run 起来。

• 注册相关的回调函数，包括构建 server，读、写、通知、指示等。
• 构建一个 server，主要包括创建一个 service（bt_manager_gatt_create_service），
填充 service 中的内容特性内容和描述信息（bt_manager_gatt_add_characteristic，
bt_manager_gatt_add_descriptor）。

• 构建完成一个 server 后，就可以启动 server 了（bt_manager_gatt_start_service）
• 使能广播，设置广播参数（bt_manager_gatt_enable_adv）。
• 如果需要，还可以设置广播的数据（bt_manager_gatt_set_adv_data）。

详情的使用例子可参考：

package/allwinner/btmanager/demo/gatt_server_test.c
小机端执行：gatt_server_test，接着再执行test，就可以用手机ble app进行连接读写server。
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6 demo 使用指南

测试蓝牙的命令是 bt_test, 该 app 可以后台运行，也可以交互运行。

启动运行帮助命令：

root@TinaLinux:/# bt_test -h
Usage:
[OPTION]...

Options:
-h, --help print this help and exit
-d, --debug open debug :-d [0~5]
-s, --stop stop bt_test
-p, --profile=NAME enable BT profile
-i, --interaction interaction
- a2dp-source Advanced Audio Source
- a2dp-sink Advanced Audio Sink
- hfp-hf Hands-Free
- hfp-ag Hands-Free Audio Gateway
- hsp-hs Headset
- hsp-ag Headset Audio Gateway

后台模式：

bt_test

交互模式：

bt_test -i

交互式命令列表：

[bt]#help
Available commands:

enable enable [0/1]: open bt or not
scan scan [0/1]: scan for devices
scan_list scan_list: list available devices
pair pair [mac]: pair with devices
unpair uppair [mac]: unpair with devices
paired_list paired_list: list paired devices
get_state get_state: get bt state
get_name get_name: get bt name
set_name set_name [name]: set bt name
get_addr get_addr: get bt address
set_dis set_dis [0~2]:0-NONE,1-page scan,2-inquiry scan&

page scan
avrcp avrcp [play/pause/stop/fastforward/rewind/forward/

backward]: avrcp control
profile_cn profile_cn [mac]:a2dp sink connect
profile_dis profile_dis [mac]:a2dp sink disconnect
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connect connect [mac]:generic method to connect
disconnect disconnect [mac]:generic method to disconnect
remove remove [mac]:removes the remote device
a2dp_src_start a2dp_src_start:start a2dp source playing
a2dp_src_stop a2dp_src_stop:stop a2dp source playing
remove remove [mac]:removes the remote device
hfp_answer hfp_answer: answer the phone
hfp_hangup hfp_hangup: hangup the phone
hfp_dial hfp_dial [num]: call to a phone number
hfp_cnum hfp_cum: Subscriber Number Information
hfp_last_num hfp_last_num: calling the last phone number dialed
hfp_vol hfp_vol [0~15]: update phone volume.
get_version get_version: get btmanager version
debug debug [0~5]: set debug level
ex_dbg ex_dbg [mask]: set ex debug mask

6.1 a2dp sink 测试步骤
1. 终端执行：bt_test -p a2dp-sink 或者 bt_test -p a2dp-sink -i (将进入交互模式)
2. 使用手机打开蓝牙，搜索"aw-bt-test-xxxx"的设备，并进行链接
3. 手机打开播放器app，进行播放音乐，设备端将同步输出声音

6.2 a2dp Souce 测试步骤
a2dp source 模式必须要交互模式运行:bt_test -i

1. 用adb先将音频文件push 到/tmp目录下，并命名为44100-stereo-s16_le-10s.wav。音频文件可以从tina sdk中
以下路径获取：

tina/package/testtools/testdata/audio_wav/common/44100-stereo-s16_le-10s.wav

2. 执行：bt_test -i -p a2dp-source

3. 扫描指定设备获取到mac地址：scan 1，扫描到后停止扫描：scan 0,获取已经扫描到的设备：scan_list

4. 连接指定蓝牙音响：connect mac_address(connect 40:EF:4C:7B:77:ED)

5. 连接成功提示"connect.."字样 。
6. 开始播放：a2dp_src_start 。
7. 停止播放：a2dp_src_stop。
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6.3 avrcp 测试步骤
1. 在 a2dp sink 测试步骤前提下（执行：bt_test -p a2dp-sink -i 进入交互模式）。
2. 分别执行：avrcp play/pause/stop/fastforward/rewind/forward/backward 可进行音乐播放，暂停，快

进，快退，上下曲等操作。

6.4 gatt server 测试步骤
1. 执行：gatt_server_test。
2. 执行：test。
3. 手机app（ble scanner或nrf connect）。
4. 连接到"aw-bt-testxx"字样的蓝牙服务。
5. 对uuid为3334分别进行read和write操作。
6. read操作时手机app会收到数字累计增加。
7. write操作时手机app发送的字符会显示在样机的串口终端上。

6.4.0.1 hfp client 测试步骤

1. 执行: bt_test -i。
2. 手机连接上蓝牙设备 。
3. 来电接听：hfp_answer 。
4. 来电拒绝:hfp_hangup 。
5. 样机拨号：hfp_dial 10001 。
6. 样机拨打上一个电话:hfp_last_num 。
7. 样机获取手机:hfp_cnum。

6.4.1 配置文件

经典蓝牙涉及到的配置文件为 bt_init.sh 和 Bluetooth.json 两个文件，前者主要功能是将蓝牙
协议栈带起来，请参考 3.1 章节，而 Bluetooth.json，请参考如下：

{
"profile":{

"a2dp_sink":1,
"a2dp_source":0,
"avrcp":1,
"hfp_hf":1,
"hfp_ag":0,
"gatt_client":0,
"gatt_server":0

},
"a2dp_sink":{

"device":"default",
"buffer_size":30080,
"period_size":3760

版权所有 © 珠海全志科技股份有限公司。保留一切权利 56



文档密级：秘密

},
"a2dp_source":{

"hci_index":0,
"DEV":"00:00:00:00:00:00",
"DELAY":20000

},
"hfp_pcm":{

"rate":16000,
"phone_to_dev_cap":"hw:snddaudio1",
"phone_to_dev_play":"default",
"dev_to_phone_cap":"CaptureMic",
"dev_to_phone_play":"hw:snddaudio1"

}
}

• profile条目:表示默认需要使能的 profile，当用户没有主动调用 bt_manager_enable_profile
使能那些 profile 时，将默认从这个条目进行读取配置，使能那些 profile。

• a2dp_sink条目:该条目主要是用 a2dp sink播放音频相关的配置，device表示使用的硬件声
卡，buffer_size为对应 alsa参数的 buffer size，period_size对应 alsa参数 period size。

• a2dp_source: 用于 a2sp_source 的配置参数，暂时未用到。
• hfp_pcm：用于 hfp over pcm 的参数配置，rate 表示蓝牙 pcm 用的采样率，跟蓝牙模组有
关；phone_to_dev_cap 表示主控端从蓝牙模组获取蓝牙通话音频的声卡（手机先传给蓝牙模
组，蓝牙模组再通过 i2s传给主控端，也就是对端手机讲话的声音），phone_to_dev_play对
端手机讲话的声音在主控端进行播放的声卡，dev_to_phone_cap 表示我录制我方讲话声音的
声卡，dev_to_phone_play 表示我方声音写入蓝牙模组的声卡（传输到对端手机中）。
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7 蓝牙常见问题排查指南

7.1 排查指南顺序
• 1 根据模组型号确认 3.2 小节的配置正确。
• 2 根据原理图检查 bt 的上电 gpio（包括 reset pin，wake ap，hostwake）、uart 号等。
• 3 检查 bt_init.sh 脚本是否正确，XR829 和 RTL8723DS 各一份，可参考标案下的配置。

RTL8723DS：
编译路径：
tina/package/allwinner/btmanager/config/realtek_bt_init.sh
样机路径：
/etc/Bluetooth/bt_init.sh

注意：
如果模组是H4协议："$bt_hciattach" -n -s 115200 /dev/ttyS1 rtk_h4
如果模组是H5协议："$bt_hciattach" -n -s 115200 /dev/ttyS1 rtk_h5

XR829
编译路径：
tina/package/allwinner/btmanager/config/xradio_bt_init.sh
样机路径：
/etc/Bluetooth/bt_init.sh

• 4 检查 Bluetooth.json 文件，尤其注意声卡选择是否正确，参考 4.6.1

编译路径：
target/allwinner/r329-evb5/base-files/etc/Bluetooth/Bluetooth.json
样机路径：
/etc/Bluetooth/Bluetooth.json
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