
Tina Linux 蓝牙
开发指南

版本号: 1.2
发布日期: 2021.04.10

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.0 2019.03.03 AWA1423 创建
1.1 2020.05.12 AWA1423 简述蓝牙协议，增加 A2DP

Source/HFP/GATT Server API 说
明

1.2 2021.04.10 AWA1381 1. 增加 R528 平台。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 概述 1
1.1 编写目的 . 1
1.2 适用范围 . 1
1.3 相关人员 . 1

2 Bluetooth 简介 2
2.1 Bluetooth Controller . 3

2.1.1 BR/EDR Controller . 3
2.1.2 LE Controller . 4

2.1.2.1 LE Device address . 5
2.1.2.2 Physical channel . 8
2.1.2.3 LE 广播通信 . 9
2.1.2.4 AdvData 和 ScanRspData 格式 10

2.2 Bluetooth HOST . 12

3 Tina 蓝牙协议栈介绍 13
3.1 运行 tina 蓝牙协议栈 . 14

3.1.1 蓝牙上电 . 15
3.2 bluez 协议栈配置 . 16

4 经典蓝牙 18
4.1 GAP . 18
4.2 A2DP . 18
4.3 AVRCP . 20
4.4 HFP . 21
4.5 经典蓝牙 API 使用说明 . 23

4.5.1 btmanager 数据结构说明 . 23
4.5.1.1 log 控制等级 . 23
4.5.1.2 BT 状态 . 23
4.5.1.3 BT 扫描模式 . 24
4.5.1.4 BT 绑定状态 . 24
4.5.1.5 BT A2dp_sink 连接状态 . 24
4.5.1.6 BT A2dp_sink stream 状态 . 24
4.5.1.7 BT AVRCP 状态 . 25
4.5.1.8 BT AVRCP 命令 . 25
4.5.1.9 BT 音乐信息 . 25
4.5.1.10 回调函数 . 26

4.5.2 初始化 API . 27
4.5.2.1 设置打印级别 . 27
4.5.2.2 获取打印级别 . 27
4.5.2.3 预初始化 . 27
4.5.2.4 初始化 . 28

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

4.5.2.5 反初始化 . 28
4.5.3 GAP 协议 API . 28

4.5.3.1 设置模式 . 28
4.5.3.2 profile 默认使能 . 28
4.5.3.3 蓝牙使能 . 29
4.5.3.4 配对回复确认 . 29
4.5.3.5 配对自动回复 . 29
4.5.3.6 启动扫描 . 30
4.5.3.7 停止扫描 . 30
4.5.3.8 判断是否在扫描状态 . 30
4.5.3.9 蓝牙配对 . 30
4.5.3.10 取消配对 . 30
4.5.3.11 获取状态 . 31
4.5.3.12 获取本地蓝牙名称 . 31
4.5.3.13 设置本地蓝牙名称 . 31
4.5.3.14 获取 mac 地址 . 31
4.5.3.15 指定 profile 连接 . 32
4.5.3.16 指定 profile 断开连接 . 32
4.5.3.17 蓝牙通用连接 . 32
4.5.3.18 蓝牙通用断开 . 32
4.5.3.19 移除设备 . 33

4.5.4 A2dp sink 协议相关 API . 33
4.5.5 A2dp Source API . 33

4.5.5.1 初始化 . 33
4.5.5.2 反初始化 . 33
4.5.5.3 开始启动播放 . 33
4.5.5.4 发送音频数据 . 34
4.5.5.5 停止播放 . 34

4.5.6 AVRCP API . 34
4.5.6.1 音频控制 . 34
4.5.6.2 音量控制 . 35

4.5.7 HFP API . 35
4.5.7.1 接听电话 . 35
4.5.7.2 拒接或挂断电话 . 35
4.5.7.3 指定号码拨号 . 35
4.5.7.4 拨打上一次电话 . 36
4.5.7.5 获取本机号码 . 36

4.6 API 调用指南 . 36

5 蓝牙低功耗 38
5.1 Attribute . 38

5.1.1 Attribute Type . 38
5.1.2 Attribute Handle . 39

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

5.1.3 Attribute Value . 39
5.1.4 Attribute Permissions . 39

5.2 GATT . 40
5.3 GATT Server . 41
5.4 GATT Server API 介绍 . 45

5.4.1 GATT Server 常见的数据结构 . 45
5.4.1.1 characteristic properties . 45
5.4.1.2 Characteristic descriptor properties 45
5.4.1.3 Attribute Permissions . 45
5.4.1.4 回调函数与参数相关结构体 . 46
5.4.1.5 服务注册相关结构体 . 47
5.4.1.6 广播类结构体 . 49

5.4.2 初始化 API . 49
5.4.2.1 gatt server 初始化 . 49
5.4.2.2 gatt server 反初始化 . 50

5.4.3 服务注册类函数 . 50
5.4.3.1 创建一个服务 . 50
5.4.3.2 添加一个 characteristic . 50
5.4.3.3 添加一个 descriptor . 50
5.4.3.4 启动一个服务 . 51
5.4.3.5 停止一个服务 . 51
5.4.3.6 删除一个服务 . 51

5.4.4 服务操作类函数 . 51
5.4.4.1 回复 client 读请求 . 51
5.4.4.2 回复 client 写请求 . 52
5.4.4.3 通知 client . 52
5.4.4.4 指示 client . 52

5.4.5 ble gap API . 52
5.4.5.1 设置随机地址 . 52
5.4.5.2 使能广播 . 53
5.4.5.3 设置广播数据 . 53

5.4.6 总结 API 的使用说明 . 53

6 demo 使用指南 54
6.1 a2dp sink 测试步骤 . 55
6.2 a2dp Souce 测试步骤 . 55
6.3 avrcp 测试步骤 . 56
6.4 gatt server 测试步骤 . 56

6.4.0.1 hfp client 测试步骤 . 56
6.4.1 配置文件 . 56

7 蓝牙常见问题排查指南 58
7.1 排查指南顺序 . 58

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iv

文档密级：秘密

插 图
2-1 协议结构图 . 2
2-2 BR/EDR 链路状态 . 3
2-3 LE 链路状态 . 5
2-4 Format of static address . 6
2-5 Format of non-resolvable private address 7
2-6 Format of resolvable private address . 7
2-7 Mapping of PHY channel to physical channel index and channel type . . 8
2-8 Advertising physical channel PDU . 9
2-9 Advertising type . 9
2-10 Advertising and Scan Response data format 10
2-11 Permitted usages for data types . 11
3-1 tina 蓝牙协议栈结构图 . 13
3-2 主控与 bt 硬件连接简图 . 15
4-1 A2DP 传输结构 . 19
4-2 A2DP 传输例子 . 19
4-3 AVRCP 框架 . 20
4-4 AVRCP 示例 . 21
4-5 HFP 框架 . 22
5-1 Attribute . 38
5-2 GATT Profile attribute types . 40
5-3 gatt 通信模型 . 41
5-4 gatt server 模型 . 42
5-5 weight service . 44

版权所有 © 珠海全志科技股份有限公司。保留一切权利 v

文档密级：秘密

1 概述

1.1 编写目的
介绍 Allwinner 平台上 Bluetooth 开发。

1.2 适用范围
Allwinner软件平台 Tina v3.0版本以上。Allwinner硬件平台支持 bluez协议栈的蓝牙模组，
包括但不限于 R11，R16，R18，R328，R329，R528，R818，MR813…

1.3 相关人员
适用 Tina 平台的广大客户以及对蓝牙开发感兴趣的同事。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 Bluetooth 简介

蓝牙技术发展至今已经迭代多个版本，截至目前（2020 年）SIG Bluetooth 规范已经到 V5.2。
蓝牙主要分为两种不同的技术: 经典蓝牙 (Classic Bluetooth，简称 BT) 和蓝牙低功耗（Blue-
tooth Low Energy，简称 BLE）。

蓝牙的工作频率范围是 2400MHz~2483.5MHz, 在经典蓝牙中，将其分为 79 个频道（每个频
道 1MHz），而在蓝牙低功耗中，分为 40 个频道（每个频道 2MHz）。

蓝牙协议从结构上可以分为控制器 (Controller) 和主机 (Host) 两大部分，如下图：

图 2-1: 协议结构图

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

Controller 和 Host 大部分情况下是运行在两个不同的芯片上，比如 Controller 运行在
XR829，而 HOST 运行在 R328，两个芯片通过硬件通信接口（如 UART，USB，SDIO）进
行连接和通信，双方的通信协议称为 HCI 协议。

2.1 Bluetooth Controller

Controller 分为 BR/EDR Controller 和 LE controller，两者的在 PHY 层的信道划分是不一
样的，两部分可以认为是独立的。

2.1.1 BR/EDR Controller

BR/EDR 采用跳频技术，数据传输时，并不是固定的占用 79 个信道中的某一个，而是一定规律
的跳动，这个跟 wifi 的固定信道传输不同；在链路层可以下图几个状态：

图 2-2: BR/EDR 链路状态

其中 synchronization train, synchronization scan 基本不用，

• STANDBY: 一个设备的默认状态, 可以认为是初始的状态。
• CONNECTION: 也就是处于连接的状态, 可以进行数据的交互。我们可以认为它是正常工作的
状态。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

• Page: 这个子状态就是我们通常称为的连接, 进行连接/激活对应的 Slave 的操作我们就称为
Page。

• Page Scan: 这个子状态是和 Page 对应的, 它就是等待被 Page 的 Slave 所处的状态, 换句话
说, 若想被 Page 到, 我们就要处于 Page Scan 的状态。

• Inquiry: 这就是我们通常所说的扫描状态, 这个状态的设备就是去扫描周围的设备。
• Inquiry Scan: 这就是我们通常看到的可被发现的设备。体现在上层就是我们在 Android 系统
中点击设备可被周围什么发现, 那设备就处于这样的状态。

2.1.2 LE Controller

LE 在 40 个信道中又可以分为两种信道：连接信道和广播信道。

连接信道用于处于连接状态的蓝牙设备直接通信，与 BR/EDR 一样，都是采用跳频，只不过是在
37 个信道上跳频。

广播信道是用于设备之间进行无连接的广播通信，这些广播通信可以用于蓝牙设备的发现、连接
等操作。LE 可以分为下图的几个状态。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

图 2-3: LE 链路状态

• Standby：链路层不收发报文。
• Advertising：链路层发送广播信道报文，并可能监听以及响应有这些广播信道报文触发的回应
报文。

• Scanning：链路层监听广播者发送的广播信道报文。
• Initiating：链路层监听并响应从特定设备发起的广播信道报文。
• Connection：分为主从设备，有发起态进入连接态的设备为主设备，由广播态进入连接态的为
从设备。

2.1.2.1 LE Device address

LE Device address 可以分为两种类型：Public device address 和 Random device ad-
dress。

（1）Public device address

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

在通信系统中，设备地址是用来唯一识别一个物理设备的，如 TCP/IP 网络中的 MAC 地址、传
统蓝牙中的蓝牙地址等。对设备地址而言，一个重要的特性，就是唯一性（或者说一定范围内的
唯一），否则很有可能造成很多问题。蓝牙通信系统也不例外。对经典蓝牙（BR/EDR）来说，
其设备地址是一个 48bits 的数字，称作 “48-bit universal LAN MAC addresses(和电脑的
MAC 地址一样)“。正常情况下，该地址需要向 IEEE 申请（其实是购买）。当然，这种地址分配
方式，在 BLE 中也保留下来了，就是 Public Device Address。Public Device Address 由
24-bit 的 company_id 和 24-bit 的 company_assigned 组成，具体可参考蓝牙 Spec 中相关
的说明（Core_v5.2.pdf：[Vol 2] Part B,Section 1.2）。

（2）Random device address

Random device address 又分为 Static Device Address 和 Private Device Address 两
类。在 BLE时代，只有 Public Device Address还不够，主要 3个原因：首先 Public Device
Address需要向 IEEE购买。虽然不贵，但在 BLE时代，相比 BLE IC的成本，还是不小的一笔
开销；其次：Public Device Address的申请与管理是相当繁琐、复杂的一件事情，再加上 BLE
设备的数量众多（和传统蓝牙设备不是一个数量级的），导致维护成本增大；最后，安全因素。
BLE 很大一部分的应用场景是广播通信，这意味着只要知道设备的地址，就可以获取所有的信
息，这是不安全的。因此固定的设备地址，加大了信息泄漏的风险。为了解决上述问题，BLE 协
议新增了一种地址：Random Device Address，即设备地址不是固定分配的，而是在设备设备
启动后随机生成的。根据不同的目的，Random Device Address分为 Static Device Address
和 Private Device Address 两类。

（a）Static Device Address

图 2-4: Format of static address

Static Device Address 是设备在上电时随机生成的地址，格式如上。46bits 的随机数，可以
很好地解决 “设备地址唯一性” 的问题，因为两个地址相同的概率很小。地址随机生成，可以解决
Public Device Address 申请所带来的费用和维护问题。

特征可以总结为：

• 最高两个 bit 为 “11”。
• 剩余的 46bits 是一个随机数，不能全部为 0，也不能全部为 1。
• 在一个上电周期内保持不变。
• 下一次上电的时候可以改变。但不是强制的，因此也可以保持不变。如果改变，上次保存的连
接等信息，将不再有效。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

（b）Private Device Address

Static Device Address通过地址随机生成的方式，解决了部分问题，Private Device Address
则更进一步，通过定时更新和地址加密两种方法，提高蓝牙地址的可靠性和安全性。根据地址是
否加密，Private Device Address又分为两类，Non-resolvable private address和 Resolv-
able private address。下面我们分别描述。

Non-resolvable private address

图 2-5: Format of non-resolvable private address

Non-resolvable private address 和 Static Device Address 类似。其格式如上，不同之处
在于，Non-resolvable private address 会定时更新。更新的周期称是由 GAP 规定的，称作
T_GAP(private_addr_int) ，建议值是 15 分钟。特征可以总结为：

• 最高两个 bit 为 “00”。
• 剩余的 46bits 是一个随机数，不能全部为 0，也不能全部为 1。
• 以 T_GAP(private_addr_int) 为周期，定时更新。

Resolvable private address

图 2-6: Format of resolvable private address

Resolvable private address 比较有用，格式如上，它通过一个随机数和一个称作 identity re-
solving key (IRK) 的密码生成，因此只能被拥有相同 IRK 的设备扫描到，可以防止被未知设备
扫描和追踪。

• 由两部分组成：高位 24bits 是随机数部分，其中最高两个 bit 为 “10”，用于标识地址类型；
低位 24bits是随机数和 IRK经过 hash运算得到的 hash值，运算的公式为 hash = ah(IRK,
prand)。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

• 当对端 BLE 设备扫描到该类型的蓝牙地址后，会使用保存在本机的 IRK，和该地址中的
prand，进行同样的 hash 运算，并将运算结果和地址中的 hash 字段比较，相同的时候，
才进行后续的操作。这个过程称作 resolve（解析），这也是 Non-resolvable private
address/Resolvable private address 命名的由来。

• 以 T_GAP(private_addr_int) 为周期，定时更新。哪怕在广播、扫描、已连接等过程中，也
可能改变。

• Resolvable private address不能单独使用，因此需要使用该类型的地址的话，设备要同时具
备 Public Device Address 或者 Static Device Address 中的一种。

2.1.2.2 Physical channel

图 2-7: Mapping of PHY channel to physical channel index and channel type

BLE 的信道划分为 0~39，其中 channel 37,38,39 为广播信道，其它为数据信道。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

2.1.2.3 LE 广播通信

从图 3 中我们知道 LE 链路有 5 个状态，其中 Advertising 和 Scanning 是 LE 非常重要的两
个状态，它对蓝牙在未建立连接之前至关重要。

广播通信的数据格式如下：

图 2-8: Advertising physical channel PDU

根据 PDU 中的 Type 字段，我们可以分为以下几个类型：

图 2-9: Advertising type

上图中，重点关注 AdvA，AdvData，ScanRspData。

• AdvA AdvA 字段包含广播者的地址，可以是 public address 也可以是 random address。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

• AdvData 包含了广播者广播的数据内容，长度为 31 字节；
• ScanRspData 包含的是广播者收到 SCAN_REQ 之后回复的广播数据内容。

2.1.2.4 AdvData 和 ScanRspData 格式

图 2-10: Advertising and Scan Response data format

如上图所示，AdvData 和 ScanRspData 格式内容由多个 AD Structure 组成，每个 AD
structure 又细分为 length 和 Data，length 为 AD structure 的长度大小，Data 为数
据内容。数据内容又为为 AD Type 和 AD data。AD Type 和 AD data 有详细内容可参考
https://www.Bluetooth.com/specifications/assigned-numbers/generic-access-profile/
和 [Core Specification Supplement.pdf]。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

图 2-11: Permitted usages for data types

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

2.2 Bluetooth HOST

一般情况下蓝牙协议栈的 controller 运行在无线模组上，而 HOST 运行在主控芯片上，所以从
用户的角度我们着重关注 HOST 端。在我们日常生活中，会碰到非常多的使用场景，比如蓝牙播
放音乐，蓝牙鼠标，蓝牙传输文件，蓝牙语音通话，蓝牙 mesh 灯，通过蓝牙定位等等。根据这
些不同的场景需求，SIG 定义了不同的规范（Profile）来支持这些场景下的需求。

根据不同的场景需求定义了不同用户规范（Profile），而 HOST 与 Controller 直接的传输是只
有一个接口线，同时对于 controller 只需要关心数据的收发，不需要关心用户的实际场景，所以
在 HOST 端有了 L2CAP 规范，这样就能屏蔽上层不同用户的协议，达到协议复用的功能，类似
TCP/IP 协议中的传输层。

L2CAP 之上有很多 profile，profile 之间有些是相辅相成的，有些则是完全独立的。根据这些
profile，我们大致可以将其分为 3 大类（参考图 1）。

• 经典蓝牙部分（黄色部分）。
• 蓝牙低功耗部分（紫色部分）。
• mesh 部分（绿色部分）。

具体的 profile 我们在后续章节再进行详细介绍。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

3 Tina 蓝牙协议栈介绍

tina 系统当前使用的是开源的 bluez 协议栈，目前已经完全适配 RTL8723DS，XR829 模组，
如用户需要再使用其他模组，可以重新适配模组相关的硬件驱动即可，如 bt hci uart 驱动。当前
有些模组厂商提供自己私有的协议栈另说。当前的软件结构图如下：

图 3-1: tina 蓝牙协议栈结构图

如上图所示，蓝牙规范的 controller主要是在模组端实现，host端主要是在主控端实现，模组与

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

主控通过 uart 进行连接通信。主控芯片（如 R328）主要实现包括 bt uart 驱动，L2CAP，以
及 L2CAP 之上的各种 profile，其中 bt uart 驱动，L2CAP，rfcomm 等基本核心协议主要是
在内核空间实现，其他主要在用户空间。由于开源的 bluez 协议栈主要是实现了基本的 profile，
缺少一些必要组件，用户进行开发可能还需再次进行二次开发如对应蓝牙音乐，bluez仅仅实现了
profile 部分，没有实现音频播放、解码部分，由此 allwinner 为了客户方便，开发完整功能，集
成了 btmanager，并提供 c 语言的 API。

3.1 运行 tina 蓝牙协议栈
tina 蓝牙协议栈运行起来，主要是以下 4 个步骤。

• 蓝牙上电
• 下载 firmware
• 启动 bluez 协议栈
• 启动 btmanager

蓝牙协议栈应用的运行，我们这里是有一个对应的脚本 bt_init.sh，对应 tina 的文件路径如下：

tina3.5之前：
target/allwinner/方案/base-files/etc/Bluetooth/bt_init.sh
tina3.5及之后：
tina/package/allwinner/btmanager/config/realtek_bt_init.sh
tina/package/allwinner/btmanager/config/xradio_bt_init.sh

bt_init.sh 的内容主要为以下：

start_hci_attach()
{

//bt reset pin复位，需提前配置bt 的pin脚，请参考蓝牙上电章节
echo 0 > /sys/class/rfkill/rfkill0/state;
echo 1 > /sys/class/rfkill/rfkill0/state;

//下载firmware，模组初始化
hciattach -n ttyS1 xradio >/dev/null 2>&1 &

//启动bluez协议栈
/etc/Bluetooth/Bluetoothd start

}

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

3.1.1 蓝牙上电

图 3-2: 主控与 bt 硬件连接简图

bt 工作需要满足以下几个条件。

• 供电：蓝牙供电一般需要两路电源，一路为主电源，另一路用于 IO 上拉电源。
• 复位：需要对 BT-RESETN 进行复位操作。
• AP-WAKE-BT：主要用于使 bt 进行休眠，当 bt 正常工作时，需要输出高电平。
• 接口：主控与 bt大部分数据通信都是通过 uart接口，而部分模组蓝牙语音通话走 pcm接口。
• 24/26MHz 时钟信号。
• 32.768KHz 信号：根据模组而定，有些模组内部通过（5）中的输入的 clk 进行分频得到，有
些需要外部单独输入该信号。

软件上，Bluetooth 需要配置的是供电，AP-WAKE-BT 拉高，BT-RESETN 可进行复位，输出
32khz 信号。关于供电部分，大部分的模组都是 wifi，bt 一体，所以大部分操作同 wifi 一致，
详情可参考《wifi 开发指南》。

以下是 linux 4.9 sysconfig.fex Bluetooth 相关的配置

[uart1]
uart1_used = 1
uart1_type = 4

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

uart1_tx = port:PG06<2><1><default><default>
uart1_rx = port:PG07<2><1><default><default>
uart1_rts = port:PG08<2><1><default><default>
uart1_cts = port:PG09<2><1><default><default>
[uart1_suspend]
uart1_tx = port:PG06<7><1><default><default>
uart1_rx = port:PG07<7><1><default><default>
uart1_rts = port:PG08<7><1><default><default>
uart1_cts = port:PG09<7><1><default><default>

[bt]
bt_used = 1
compatible = "allwinner,sunxi-bt"
clocks = "losc_out"
bt_rst_n = port:PE04<1><default><default><0>

[btlpm]
btlpm_used = 1
compatible = "allwinner,sunxi-btlpm"
uart_index = 1
bt_wake = port:PE03<1><default><default><1>
bt_hostwake = port:PE00<6><default><default><0>

uart字段：主要配置uart rx，rx，ctx，rtx所使用的gpio pin。
bt字段：主要是配置bt 复位所使用的gpio pin。
btlmp字段： 主要是配置host休眠与唤醒bt，bt唤醒host所使用的gpio pin。

3.2 bluez 协议栈配置
tina目前已经适配了 RTL8723DS，XR829的模组，只需要在 kernel_menuconfig和menu-
config 选上对应的配置即可。

以下列出各个模组 kernel_menuconfig 以及 menuconfig 的选项。

（1）公用配置内核部分：make kernel_menuconfig

[*] Networking support --->
<*> Bluetooth subsystem support --->
[*] Bluetooth Classic (BR/EDR) features
//如果需要支持hfp，需要选上下面两个选项
<*> RFCOMM protocol support
[*] RFCOMM TTY support

<*> RF switch subsystem support --->
[] RF switch input support //这个不能选
<*> GPIO RFKILL driver

用户空间部分：make menuconfig 配置

Utilities --->
<*> bluez-daemon.. Bluetooth daemon
<*> bluez-utils.. Bluetooth utilities

Allwinner --->

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

btmanager --->
-*- btmanager-core.................................... Bluetooth manager core
<*> btmanager-demo................................... Tina btmanager app demo

（2）XR829 模组

make kernel_menuconfig 配置

[*] Networking support --->
<*> Bluetooth subsystem support --->
Bluetooth device drivers --->
[*] UART (H4) protocol support
<*> Xradio Bluetooth sleep driver support
<*> Xradio Bluetooth farmware debug interface support
[*] Xradio protocol support
[*] Hfp audio over pcm

make menuconfig 配置

Kernel modules--->
Wireless Drivers--->
<*> kmod-net-xr829................................... xr829 support (staging)
<*> kmod-net-xrbtlpm......................... xradio bt lpm support (staging)

Firmware--->
<*> xr829-firmware..................................... Xradio xr829 firmware
[] xr829 with 40M sdd //如果是40M晶振，需要选择上。

（2）RTL8723DS 模组

make kernel_menuconfig 配置

[*] Networking support --->
<*> Bluetooth subsystem support --->
Bluetooth device drivers --->
[*] Realtek Three-wire UART (H5) protocol support
<*> HCI UART driver
[*] UART (H4) protocol support
[*] Hfp audio over pcm //如果支持hfp over pcm选上

make menuconfig 配置

Kernel modules--->
Wireless Drivers--->
<*> kmod-net-rtl8723ds........................... RTL8723DS support (staging)

Firmware--->
<*> r8723ds-firmware.............................. RealTek RTL8723DS firmware

Utilities --->
rtk_hciattach --->
<*> rtk_hciattach................... Realtek BT HCI UART initialization tools

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

4 经典蓝牙

开源的 bluez 协议栈，并不能满足用户的需求，它还是缺少众多组件，因而 btmanager 应运而
生。本章节开始重点介绍 btmanager 经典蓝牙部分 API 使用，当前支持情况如下：

• GAP
• A2DP Source
• A2DP sink
• AVRCP
• HFP client(针对 HFP over pcm)

4.1 GAP

GAP（Generic Access Profile）是一个基础的蓝牙 profile，用于提供蓝牙设备的通用访问功
能，包括设备的发现、连接、鉴权、服务发现等等。

GAP 是所有其它应用模型的基础，它定义了在 Bluetooth 设备间建立基带链路的通用方法。还
定义了一些通用的操作，这些操作可供引用 GAP 的应用模型以及实施多个应用模型的设备使用。
GAP确保了两个蓝牙设备（不管制造商和应用程序）可以通过 Bluetooth技术交换信息，以发现
彼此支持的应用程序。

4.2 A2DP

为了利用蓝牙异步无连接链路传输高质量的音频数据，蓝牙 SIG 发布了高级音频分发规范（Ad-
vanced Audio Distribution Profile, A2DP）。A2DP 典型的应用是音乐播放器将音频数据发
送耳机或者音箱。当前 A2DP 仅仅定义了点对点的音频分发，没有定义广播式的音频分发。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

图 4-1: A2DP 传输结构

发送音频数据那一端我们称为 Souce 端（比如手机），接收音频的那一端我们称为 Sink 端（比
如蓝牙音箱）。A2DP是建立在 AVDTP之上的，AVDTP实现实体通过 L2CAP分组进行 audio
数据流的传输和 audio 信令的交换，信令提供数据刘的发现、配置、建立和传输控制等功能，可
以理解为 AVDTP 是 A2DP 更基础的协议。

图 4-2: A2DP 传输例子

A2DP 可以分为 A2DP Source 和 A2DP Sink，音频发送端称为 A2DP Souce，数据接收端称

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

为 A2DP Sink。

4.3 AVRCP

AVRCP 是蓝牙音频实现蓝牙无线遥控功能的规范。

图 4-3: AVRCP 框架

AVRCP中定义了两种设备角色：Controller（控制器，CT）、Target（目标机，TG）。CT是
发起命令传输给到 TG的宿主，比如个人电脑、PDA、手机等。TG是接收命令的宿主，比如蓝牙
耳机、TV 等。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

文档密级：秘密

图 4-4: AVRCP 示例

AVRCP 中分为四种指令：

• Unit info: 用来获取 AV/C 设备的整体信息。
• Subunit info：用来获取 AV/C 设备的子设备信息。
• Vendor Dependent：厂商自定义的 AV/C 指令。
• Pass Through：音频设备使用最多的命令，如播放、暂停、快进、快退、下一曲、上一曲。

4.4 HFP

HFP 可以用做蓝牙语音通话，蓝牙语音通话实际上我们只需要重点关注两个方面：一个是语音通
话的音频走哪里（over pcm 还是 over sco）。另外一个是蓝牙语音通话的指令，称为 AT 指令
（比如电话的接听，挂断，拨号，获取手机信息等等）。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 21

文档密级：秘密

图 4-5: HFP 框架

（1）蓝牙语音通话音频数据

如上图所示，蓝牙语音通话的音频可以通过 HCI（SCO），也可以直接通过 PCM。

蓝牙语音通话数据走 HCI，数据流通过程是数据从模组端通过 uart 传输给主控，到 host 端后通
过 SCO 链路传输给到上层应用。走 SCO 链路，蓝牙语音通话将与其他 profile 同时占用 hci，
这样对多个 profile 同时存在时有极高要求。

蓝牙语音通话走 PCM，在模组端有单独的 pcm 接口，可以通过 I2S 与主控直接进行连接，蓝牙
语音通话数据就就不需要再通过 HCI，占用带宽。

蓝牙链路层可以分为 ACL（面向无连接），SCO（面向连接）。大部分都是使用 ACL 链路，只

版权所有 © 珠海全志科技股份有限公司。保留一切权利 22

文档密级：秘密

有蓝牙语音通话用 SCO 链路。而同时当前市面上的模组还支持蓝牙语音通话数据直接过 PCM
（即也不经过 HCI SCO）。

当前我们的 btmanager 主要支持的方式是 hfp audio stream over pcm，没有走 SCO。

4.5 经典蓝牙 API 使用说明
代码位置：

tina/package/allwinner/btmanager

使用示例：

tina/package/allwinner/btmanager/demo

4.5.1 btmanager 数据结构说明

4.5.1.1 log 控制等级

typedef enum btmg_log_level_t {
BTMG_LOG_LEVEL_NONE = 0, //关闭任何打印
BTMG_LOG_LEVEL_ERROR, //只打印错误信息
BTMG_LOG_LEVEL_WARNG, //打印错误和警告信息
BTMG_LOG_LEVEL_INFO, //打印提示信息
BTMG_LOG_LEVEL_DEBUG //打开调试信息

}btmg_log_level_t;

4.5.1.2 BT 状态

typedef enum {
BTMG_STATE_OFF,
BTMG_STATE_ON,
BTMG_STATE_TURNING_ON,
BTMG_STATE_TURNING_OFF,

} btmg_state_t;

数据结构 btmg_state_t 规定了 BT 可能处于的状态。bt_manager_get_state() 可主动获取当
前 BT 的状态。如果注册了 gap_status_cb() 回调函数，BT 状态改变时，会立即回调返回当前
状态。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 23

文档密级：秘密

4.5.1.3 BT 扫描模式

typedef enum {
BTMG_SCAN_MODE_NONE, //设备不可被发现和连接

BTMG_SCAN_MODE_CONNECTABLE, //可被连接不可被发现
BTMG_SCAN_MODE_CONNECTABLE_DISCOVERABLE,//可被发现可被连接

}btmg_discovery_mode_t;

可被连接不可被发现此种模式一般为已经配对的设备进行直连。

4.5.1.4 BT 绑定状态

typedef enum {
BTMG_BOND_STATE_NONE,
BTMG_BOND_STATE_BONDING,
BTMG_BOND_STATE_BONDED,

} btmg_bond_state_t;

btmg_bond_state_t 规定了 BT 处于的配对状态，通过注册的回调函数 gap_bond_state_cb()
即时返回配对状态。

4.5.1.5 BT A2dp_sink 连接状态

typedef enum {
BTMG_A2DP_SINK_DISCONNECTED,
BTMG_A2DP_SINK_CONNECTING,
BTMG_A2DP_SINK_CONNECTED,
BTMG_A2DP_SINK_DISCONNECTING,

} btmg_a2dp_sink_connection_state_t;

btmg_a2dp_sink_connection_state_t 规定了 a2dp_sink 协议的连接状态，通过注册的回调
函数 a2dp_sink_connection_state_cb() 即时返回连接状态。

4.5.1.6 BT A2dp_sink stream 状态

typedef enum {
BTMG_A2DP_SINK_AUDIO_SUSPENDED,
BTMG_A2DP_SINK_AUDIO_STOPPED,
BTMG_A2DP_SINK_AUDIO_STARTED,

} btmg_a2dp_sink_audio_state_t;

btmg_a2dp_sink_audio_state_t 规定了 a2dp_sink 音频流播放状态，通过注册的回调函
数 a2dp_sink_audio_state_cb() 返回音频播放状态。由于 a2dp_sink 音频状态底层走的
是 AVDTP 协议，部分手机蓝牙协议栈在暂停以后发送暂停状态存在数秒的延迟，因此通过

版权所有 © 珠海全志科技股份有限公司。保留一切权利 24

文档密级：秘密

a2dp_sink_audio_state_cb() 返回音频播放状态会因手机而异存在暂停状态回调延迟于实际音
频暂停状态数秒的情况。故不推荐使用 a2dp_sink_audio_state_cb() 返回音频播放状态，请使
用基于 AVRCP 协议的 avrcp_play_state_cb() 回调函数获取即时的音频播放状态。

4.5.1.7 BT AVRCP 状态

typedef enum {
BTMG_AVRCP_PLAYSTATE_STOPPED,
BTMG_AVRCP_PLAYSTATE_PLAYING,
BTMG_AVRCP_PLAYSTATE_PAUSED,
BTMG_AVRCP_PLAYSTATE_FWD_SEEK,
BTMG_AVRCP_PLAYSTATE_REV_SEEK,
BTMG_AVRCP_PLAYSTATE_ERROR,

} btmg_avrcp_play_state_t;

btmg_avrcp_play_state_t规定了基于 AVRCP协议返回的音频播放状态，通过注册的回调函数
avrcp_play_state_cb() 即时返回音频播放状态。相比使用 a2dp_sink_audio_state_cb() 返回
音频播放状态，会具有更好的实时性，并且能返回更多的音频状态。

4.5.1.8 BT AVRCP 命令

typedef enum {
BTMG_AVRCP_PLAY,
BTMG_AVRCP_PAUSE,
BTMG_AVRCP_STOP,
BTMG_AVRCP_FASTFORWARD,
BTMG_AVRCP_REWIND,
BTMG_AVRCP_FORWARD,
BTMG_AVRCP_BACKWARD,
BTMG_AVRCP_VOL_UP,
BTMG_AVRCP_VOL_DOWN,

} btmg_avrcp_command_t;

btmg_avrcp_command_t 规定了 API bt_manager_avrcp_command() 可以发送了 AVRCP
命令。

4.5.1.9 BT 音乐信息

typedef struct btmg_track_info_t {
char title[256];
char artist[256];
char album[256];
char track_num[64];
char num_tracks[64];
char genre[256];
char playing_time[256];

版权所有 © 珠海全志科技股份有限公司。保留一切权利 25

文档密级：秘密

} btmg_track_info_t;

btmg_track_info_t 规定了蓝牙音乐播放切换歌曲，avrcp_track_changed_cb 回调接口返回
的歌曲信息。

4.5.1.10 回调函数

btmg_callback_t 是总回调函数结构体，用户在使用的时候只需要定义一个 btmg_callback_t
类型的函数指针，然后通过调用 bt_manager_preinit() 即可对该指针进行初始化并分配相应的
空间。

typedef struct btmg_callback_t {
btmg_manager_callback_t btmg_manager_cb;
btmg_gap_callback_t btmg_gap_cb;
btmg_a2dp_sink_callback_t btmg_a2dp_sink_cb;
btmg_avrcp_callback_t btmg_avrcp_cb;
btmg_hfp_callback_t btmg_hfp_cb;

}btmg_callback_t;

其中：btmg_manager_cb 用于返回 bt_manager 本身的事件回调，目前仅用于内部测试使
用。btmg_gap_cb 用于返回所有的 GAP 协议相关的事件回调，对应的 btmg_gap_callback_t
定义如下：

typedef struct btmg_gap_callback_t {
bt_gap_status_cb gap_status_cb; /*used for return results of bt_manager_enable and
status of BT*/
bt_gap_discovery_status_cb gap_disc_status_cb; /*used for return discovery status of BT
*/
bt_gap_dev_found_cb gap_dev_found_cb; /*used for device found event*/
bt_gap_update_rssi_cb gap_update_rssi_cb; /*update rssi for discovered and bonded
devices*/
bt_gap_bond_state_cb gap_bond_state_cb; /*used for bond state event*/
bt_gap_ssp_request_cb gap_ssp_request_cb; /*used for ssp request*/
bt_gap_pin_request_cb gap_pin_request_cb; /*used for pin request*/

} btmg_gap_callback_t;

btmg_a2dp_sink_cb 用于返回所有的 a2dp_sink 协议相关的事件回调，对应的定义如下：

typedef struct btmg_a2dp_sink_callback_t {
/*used to report the a2dp_sink connection state*/
bt_a2dp_sink_connection_state_cb a2dp_sink_connection_state_cb;
/*used to report the a2dp_sink audio state, not recommended as mentioned before*/
bt_a2dp_sink_audio_state_cb a2dp_sink_audio_state_cb;
/*used to report the a2dp_sink volume, range: 0~16*/
bt_a2dp_sink_audio_volume_cb a2dp_sink_audio_volume_cb;

} btmg_a2dp_sink_callback_t;

btmg_hfp_callback_t 用于返回 hfp 协议相关事件的回调，对应定义如下：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 26

文档密级：秘密

typedef struct btmg_hfp_callback_t {
bt_hfp_hs_event_cb hfp_hf_event_cb;

} btmg_hfp_callback_t;

btmg_avrcp_callback_t 用于返回所有的 AVRCP 协议相关的事件回调，对应的定义如下：

typedef struct btmg_avrcp_callback_t {
bt_avrcp_play_state_cb avrcp_play_state_cb;
bt_avrcp_track_changed_cb avrcp_track_changed_cb;
bt_avrcp_play_position_cb avrcp_play_position_cb;

} btmg_avrcp_callback_t;

其中，avrcp_play_state_cb 用于返回当前的播放状态；avrcp_track_changed_cb 在切换歌
曲回即时返回当前播放音乐的信息（设备地址、歌曲名称、歌手名、歌曲专辑名、当前音乐位于
音乐列表的顺序号、总播放列表音乐数、音乐类型、播放总时长）；avrcp_play_position_cb用
于实时返回当前音乐播放的进度（总时长、当前播放时刻。

4.5.2 初始化 API

4.5.2.1 设置打印级别

函数原型 int bt_manager_set_loglevel(btmg_log_level_t log_level)

参数说明 btmg_log_level_t 打印等级类型，详见 4.2.3.1
返回说明 int 0: 成功；-1: 失败。
功能描述 设置 bt_manager 内部打印等级。

4.5.2.2 获取打印级别

函数原型 btmg_log_level_t bt_manager_get_loglevel(void)

参数说明 无。
返回说明 返回当前使用的 btmg_log_level_t 类型打印等级值。
功能描述 获取 bt_manager 内部当前使用的打印等级。

4.5.2.3 预初始化

函数原型 int bt_manager_preinit(btmg_callback_t **btmg_cb)

参数说明 指向 btmg_callback_t 指针类型的指针。
返回说明 int 0: 成功；非 0: 失败。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 27

文档密级：秘密

函数原型 int bt_manager_preinit(btmg_callback_t **btmg_cb)

功能描述 用于对用户定义的回调函数结构体指针 btmg_callback_t * 进行初始化，用
户也可自行显示地对指针进行初始化。初始化的指针在用户程序 exit 之前必
须调用 bt_manager_deinit() 进行回收。

4.5.2.4 初始化

函数原型 int bt_manager_init(btmg_callback_t *btmg_cb)

参数说明 已经初始化了的回调函数结构体指针 btmg_callback_t *。
返回说明 int 0: 成功；-1: 失败。
功能描述 进行蓝牙的初始化设置（如读取解析配置文件、加载蓝牙协议栈、为内部变量

分配空间、启动内部线程等）。

4.5.2.5 反初始化

函数原型 int bt_manager_deinit(btmg_callback_t *btmg_cb)

参数说明 指向 btmg_callback_t 指针类型的指针。
返回说明 int 0: 成功；非 0: 失败。
功能描述 bt_manager 反初始化。在 bt_manager 蓝牙应用程序退出前必要进行的调

用，用以退出内部线程、保存配置文件、恢复内部状态等。

4.5.3 GAP 协议 API

4.5.3.1 设置模式

函数原型 int bt_manager_set_discovery_mode(btmg_discovery_mode_t mode)

参数说明 btmg_discovery_mode_t mode：BT 设备扫描模式（详见 4.2.3.3）。
返回说明 int 0: 成功；-1: 失败。
功能描述 设置本地 BT 设备扫描模式。

4.5.3.2 profile 默认使能

版权所有 © 珠海全志科技股份有限公司。保留一切权利 28

文档密级：秘密

函数原型 int bt_manager_set_enable_default(bool is_default)

参数说明 bool is_default: 在调用 bt_manager_init() 时是否直接默认使能 BT。
true: 默认使能 BT;false: 关闭默认使能。

返回说明 int 0: 成功；非 0: 失败。
功能描述 在调用 bt_manager_init() 时是否直接默认使能 BT。第一次启动 BT，只有

在 bt_manager_init() 之前设置有效。后续在用户调用 bt_manager 的进程
未退出的情况下该设置一直有效。

4.5.3.3 蓝牙使能

函数原型 int bt_manager_enable(bool enable)

参数说明 bool enable: true: 使能 BT；false: 关闭 BT。
返回说明 int 0: 成功；非 0: 失败。
功能描述 使能/关闭 BT。

4.5.3.4 配对回复确认

函数原型 int bt_manager_set_auto_ssp_reply(bool auto_reply)

参数说明 bool auto_reply: 是否自动回复 ssp 配对请求。true: 使能自动回复 ssp 请
求;false: 关闭使能自动回复 ssp 请求。

返回说明 int 0: 成功；-1: 失败。
功能描述 在用户调用 bt_manager 的进程未退出的情况下该设置一直有效。目前初始

化版本未将该设置写入配置文件，后续版本更新会将该设置保存到配置文件。

4.5.3.5 配对自动回复

函数原型 int bt_manager_set_auto_pin_reply(bool auto_reply)

参数说明 bool auto_reply: 是否自动回复 pin 码配对请求。true: 使能自动回复 pin
码配对请求;false: 关闭使能自动回复 pin 码配对请求。

返回说明 int 0: 成功；-1: 失败。
功能描述 在用户调用 bt_manager 的进程未退出的情况下该设置一直有效。目前初始

化版本未将该设置写入配置文件，后续版本更新会将该设置保存到配置文
件，（用户调用 bt_manager 是否退出的情况下都）将永久有效。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 29

文档密级：秘密

4.5.3.6 启动扫描

函数原型 int bt_manager_start_discovery(void)

参数说明 无。
返回说明 int 0: 成功；-1: 失败。
功能描述 发起 BT 扫描。扫描状态通过 gap 回调函数 gap_disc_status_cb() 即时返

回。

4.5.3.7 停止扫描

函数原型 int bt_manager_cancel_discovery(void)

参数说明 无。
返回说明 int 0: 成功；-1: 失败。
功能描述 取消 BT 扫描。扫描状态通过 gap 回调函数 gap_disc_status_cb() 即时返

回。

4.5.3.8 判断是否在扫描状态

函数原型 bool bt_manager_is_discovering()

参数说明 无。
返回说明 bool true:BT 扫描中；bool false:BT 未扫描。
功能描述 设置 bt_manager 内部打印等级。

4.5.3.9 蓝牙配对

函数原型 int bt_manager_pair(char *addr)

参数说明 无。
返回说明 btmg_log_level_t 打印等级类型，详见 4.2.3.1。
功能描述 设置 bt_manager 内部打印等级。

4.5.3.10 取消配对

版权所有 © 珠海全志科技股份有限公司。保留一切权利 30

文档密级：秘密

函数原型 int bt_manager_unpair(char *addr)

参数说明 char *addr: 需要取消配对的 BT 设备地址。。
返回说明 int 0: 成功；非 0: 失败。
功能描述 取消 BT 配对。配对状态通过 gap 回调函数 gap_bond_state_cb() 即时返

回。

4.5.3.11 获取状态

函数原型 btmg_state_t bt_manager_get_state()

参数说明 无。
返回说明 btmg_state_t 类型蓝牙状态。
功能描述 获取 BT 状态。

4.5.3.12 获取本地蓝牙名称

函数原型 int bt_manager_get_name(char *name, int size)

参数说明 char *name: 用于保存 bt_name 的指针。int size: 用于保存 bt_name 空
间的大小。空间大小推荐设置 MAX_BT_NAME_LEN+1。

返回说明 int 0: 成功；非 0: 失败。。
功能描述 获取本地 BT 设备名称。

4.5.3.13 设置本地蓝牙名称

函数原型 int bt_manager_set_name(char *name)

参数说明 char *name: 用于设置的 BT 名称。字符串长度不能超过
MAX_BT_NAME_LEN，否则会被截断。

返回说明 int 0: 成功；非 0: 失败。。
功能描述 设置本地 BT 设备名称。

4.5.3.14 获取 mac 地址

版权所有 © 珠海全志科技股份有限公司。保留一切权利 31

文档密级：秘密

函数原型 int bt_manager_get_address(char *addr, int size)

参数说明 char *addr: 用于保存本地 BT 设备地址的指针;int size: 用于保存 BT 地址
空间的大小。空间大小推荐设置 MAX_BT_ADDR_LEN+1。

返回说明 int 0: 成功；非 0: 失败。。
功能描述 获取本地 BT 设备地址。。

4.5.3.15 指定 profile 连接

函数原型 int bt_manager_profile_connect(char *addr,btmg_profile_t profile)

参数说明 addr: 需要连接的蓝牙设备地址；profile: 需要连接的 profile。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 指定 profile 进行连接。

4.5.3.16 指定 profile 断开连接

函数原型
int bt_manager_profile_disconnect(char *addr,btmg_profile_t
profile);

参数说明 addr: 需要断开的蓝牙设备地址；profile: 需要断开的 profile。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 指定 profile 进行断开连接。

4.5.3.17 蓝牙通用连接

函数原型 int bt_manager_connect(const char *addr);

参数说明 addr: 需要连接的蓝牙设备地址。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 蓝牙通用连接，包括对端所有 profile。

4.5.3.18 蓝牙通用断开

函数原型 int bt_manager_disconnect(const char *addr);

参数说明 addr: 需要断开的蓝牙设备地址。
返回说明 int 0: 成功；非 0: 失败。。
功能描述 蓝牙通用断开连接，包括对端所有 profile。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 32

文档密级：秘密

4.5.3.19 移除设备

函数原型 int bt_manager_remove_device(const char *addr);

参数说明 addr: 需要断开的蓝牙设备地址。
返回说明 int 0: 成功；非 0: 失败。。
功能描述移 除掉指定蓝牙设备，如果是连接的设备，会将其断开，然后再将删除其配对信

息，下次对端设备连接需要重新配对。

4.5.4 A2dp sink 协议相关 API

A2DP Sink没有相关 API，已经在 btmanager内部实现，用户不需要关心，用户要使用 A2DP
sink，只需要在使能 profile 的时候使能 A2DP Sink 即可。

4.5.5 A2dp Source API

4.5.5.1 初始化

函数原型
int bt_manager_a2dp_src_init(uint16_t channels,uint16_t
sampling);

参数说明 channels：音频通道；sampling：音频采样率
返回说明 int 0: 成功；非 0: 失败。。
功能描述 初始化

4.5.5.2 反初始化

函数原型 int bt_manager_a2dp_src_deinit(void);

参数说明 无
返回说明 int 0: 成功；非 0: 失败。。
功能描述 不使用的时候，进行反初始化

4.5.5.3 开始启动播放

版权所有 © 珠海全志科技股份有限公司。保留一切权利 33

文档密级：秘密

函数原型 int bt_manager_a2dp_src_stream_start(uint32_t len);

参数说明 len：内部每次写入蓝牙协议栈的数据长度
返回说明 int 0: 成功；非 0: 失败。。
功能描述 开始启动播放

4.5.5.4 发送音频数据

函数原型 int bt_manager_a2dp_src_stream_send(char *data,int len);

参数说明 data: 数据，len：发送的数据长度
返回说明 int 0: 成功；非 0: 失败。。
功能描述 发送音频数据

4.5.5.5 停止播放

函数原型 bt_manager_a2dp_src_stream_stop(void);

参数说明 无
返回说明 int 0: 成功；非 0: 失败。。
功能描述 停止播放

4.5.6 AVRCP API

4.5.6.1 音频控制

函数原型
int bt_manager_avrcp_command(char *addr,
btmg_avrcp_command_t command)

参数说明 需要控制的设备的地址；命令。
返回说明 int 0: 成功；非 0: 失败。
功能描述 AVRCP 控制。

btmg_avrcp_command_t 类型 AVRCP 命令:

BTMG_AVRCP_PAUSE：暂停播放；

BTMG_AVRCP_STOP：停止播放；

BTMG_AVRCP_FASTFORWARD：快进；

版权所有 © 珠海全志科技股份有限公司。保留一切权利 34

文档密级：秘密

BTMG_AVRCP_REWIND：快退；

BTMG_AVRCP_FORWARD：下一首；

BTMG_AVRCP_BACKWARD：前一首；

BTMG_AVRCP_VOL_UP：调高音量；

BTMG_AVRCP_VOL_DOWN：调低音量；

4.5.6.2 音量控制

函数原型 int bt_manager_vol_changed_noti(char *vol_level)

参数说明 char *vol_level: 需要设置的音量等级。设置范围为 “0”~“16”。
返回说明 int 0: 成功；非 0: 失败。
功能描述 设置绝对音量等级。

4.5.7 HFP API

4.5.7.1 接听电话

函数原型 int bt_manager_hfp_client_send_at_ata(void)

参数说明 char *vol_level: 需要设置的音量等级。设置范围为 “0”~“16”。
返回说明 int 0: 成功；非 0: 失败。
功能描述 设置绝对音量等级。

4.5.7.2 拒接或挂断电话

函数原型 int bt_manager_hfp_client_send_at_chup(void)

参数说明 char *vol_level: 需要设置的音量等级。设置范围为 “0”~“16”。
返回说明 int 0: 成功；非 0: 失败。
功能描述 设置绝对音量等级。

4.5.7.3 指定号码拨号

版权所有 © 珠海全志科技股份有限公司。保留一切权利 35

文档密级：秘密

函数原型 int bt_manager_hfp_client_send_at_atd(char *number)

参数说明 number：想要拨打的电话号码
返回说明 int 0: 成功；非 0: 失败。
功能描述 指定电话号码拨号

4.5.7.4 拨打上一次电话

函数原型 int bt_manager_hfp_client_send_at_bldn(void)

参数说明 无
返回说明 int 0: 成功；非 0: 失败。
功能描述 播打上一次播打过的电话

4.5.7.5 获取本机号码

函数原型 int bt_manager_hfp_client_send_at_cnum(void)

参数说明 无
返回说明 int 0: 成功；非 0: 失败。
功能描述 获取本机号码，本机号码将通过回调函数返回

4.6 API 调用指南
根据 4.5 章节 API，编写了使用示例，供用户参考，主要的代码路径如下：

package/allwinner/btmanager/demo

├── bt_cmd.c API调用示例
├── bt_cmd.h
├── bt_test.c main入口
└── Makefile 编译Makefile

经典蓝牙 API 的使用可以总结为以下几步，(可参考 bt_test.c::_bt_init)：

• 设置打印级别：bt_manager_set_loglevel。
• 预初始化：bt_manager_preinit，运行期间只需要调用一次。
• 初始化回调函数：主要是填充 btmg_callback_t 结构体
• 使能需要的 profile：bt_manager_enable_profile，如果没有定制化，将默认从 Blue-
tooth.json 文件 profile 条目中读取使能默认的 profile。

• 经典蓝牙初始化：bt_manager_init。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 36

文档密级：秘密

• 分配绑定和扫描的存储结构。
• 经典蓝牙使能：bt_manager_enable。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 37

文档密级：秘密

5 蓝牙低功耗

蓝牙低功耗对应的 profile 是 GATT（Generic Attribute profile），从第 2 章节图 1 中我们
知道 GATT 规范是基于 ATT 协议（Attribute Protocol）实现的。ATT 的通信模型遵循 C/S 模
型，包括 Server 与 Client。

5.1 Attribute

一台设备如果作为 gatt server 端，在 server 端可以有很多服务，比如心率服务，血压服务，电
量服务等等，而服务的基本组成单元是 Attribute（属性）。

图 5-1: Attribute

属性（Attribute）是服务的基石，Attribute 的数据包类型如上图，包含了四种元素：

• Attribute Handle
• Attribute Type
• Attribute Value
• Attribute Permissions

5.1.1 Attribute Type

Attribute Type 由 UUID 唯一标识，SIG 蓝牙联盟规定一些 UUID 代表特定的类
型，比如 0x180D 代表 Heart Rate，0x1810 代表 Blood Pressure 等等（可参考：
https://www.Bluetooth.com/specifications/gatt/services/）。

128 位的 UUID 相当长，设备间为了识别数据类型需要发送长达 16 字节的数据，为了提高效
率，SIG 定义了 “蓝牙 UUID 基数” 的 128 位通用唯一标示码，结合一个较短的 16 位数使用，
因此在实际传输的时候是 16 位的 uuid，在收发后补上蓝牙 UUID 基数即可。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 38

文档密级：秘密

如蓝牙基数如下：

00000000-0000-1000-8000-00805F9B34FB

需要发送的 16 位识别码为 0x2A01，完整的 128 位 UUID 便是：

00002A01-0000-1000-8000-00805F9B34FB

UUID 可以分为以下几组：

• 0x1800 ~ 0x26FF 用作服务类型通用唯一识别码
• 0x2700～0x27FF 用作标示计量单位
• 0x2800~0x28FF 用于区分属性类型
• 0x2900～0x29FF 用作特性描述
• 0x2A00～0X7FFF 用于区分特性类型

5.1.2 Attribute Handle

设备中有许多服务，而服务有许多属性组成，比如温度传感器服务包含温度属性、设备名称属
性、电池电量属性等等，这些属性似乎可以通过 Attribute Type 来作于区分，但是如果温度属性
有分为室内温度属性和室外温度属性，这样就没法通过 Attribute Type 来进行区分了，为了解决
这个问题引入了 Attribute Handle，属性句柄。有效的属性句柄取值范围 0x0001~0xFFFF。

5.1.3 Attribute Value

Attribute Value 是实际属性的值，比如玩温度传感器服务中温度属性温度是多少度。

5.1.4 Attribute Permissions

Attribute 具有一组与之关联的权限值。权限值指定了关联属性是否具备读写、安全权限。一般有
以下几种类型：

• Readable
• Writeable
• Readable and writable
• Encryption required
• No encryption required
• Authentication Required
• No Authentication Required

版权所有 © 珠海全志科技股份有限公司。保留一切权利 39

文档密级：秘密

以上主要是关于属性四种元素的介绍，总结下 GATT profile 常见的属性定义，如下：

图 5-2: GATT Profile attribute types

5.2 GATT

GATT 是基于 ATT 协议规范，所以 GATT 遵循 C/S 通信模型，包括 GATT server 和 GATT
client。双方数据的传输方式分为以下 4 类：

• Client Request read
• Client Request write
• Server Notify
• Server Indication

版权所有 © 珠海全志科技股份有限公司。保留一切权利 40

文档密级：秘密

图 5-3: gatt 通信模型

其中 Server Notify 和 Server Indication 的区别是前者 server 发送数据给 client 端不需要
client 回复，后者是需要 client 端回复。

5.3 GATT Server

前面说了，一个设备中可能有很多个服务，而服务一般具备一定的格式，服务的内容由属性（At-
tribute）构成。一个设备的服务结构组成如下图：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 41

文档密级：秘密

图 5-4: gatt server 模型

GATT profile 的层次结构依次为 Profile->Service->Characteristic，“profile” 是基于
GATT 所派生的真正 profile, 位于 GATT profile hierarchy 最顶层, 有一个或者多个和某一应
用的场景有关的 service 组成。

GATT server 是一系列数据和相关行为组成的集合，为了完成某个功能或特性。一个 service
包含一个或者多个 Characteristic, 也可以通过 include 的方式, 包含其他 service. 所有一个
server 的属性类型可以分为以下几类：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 42

文档密级：秘密

• Primary Service
• Secondary Service
• Include
• Characteristic

大部分情况下，我们可能只会用到 Primary Service 和 Characteristic。Primary service 是
用于区分不同的 service，比如上图中有两个 service。一个 service 开头的 uuid 一般固定为
0x2800，其 value 值将用于表征这是那一类 service，同时将结束于下一个 0x2800。

Characteristic 则是 GATT profile 最基本的数据单位, 由一个 properties, 一个 value, 一个或
者个 Description 组成。

• Characteristic Properties 定义了 Characteristic 的 value 如何被使用, 以及 Character-
istic 的 descriptor 如何被访问。

• Characteristic value 是特征的实际值, 例如一个温度特征, 就是温度值。
• Characteristic descriptor 则保存了一些和 Characteristic value 相关的信息。比如温度的
单位是什么表征的。

注意：server 中的每一个定义,service,Characteristic,Characteristic Properties, Charac-
teristic value,Characteristic descriptor 等等, 都是通过 Attribute 来进行表征的。

下图是实际一个 service 的例子：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 43

文档密级：秘密

图 5-5: weight service

版权所有 © 珠海全志科技股份有限公司。保留一切权利 44

文档密级：秘密

5.4 GATT Server API 介绍
当前 btmanager 仅仅支持 gatt server 部分，后续会再逐渐支持 gatt client。

5.4.1 GATT Server 常见的数据结构

5.4.1.1 characteristic properties

typedef enum {
BT_GATT_CHAR_PROPERTY_BROADCAST = 0x01,
BT_GATT_CHAR_PROPERTY_READ = 0x02,
BT_GATT_CHAR_PROPERTY_WRITE_NO_RESPONSE = 0x04,
BT_GATT_CHAR_PROPERTY_WRITE = 0x08,
BT_GATT_CHAR_PROPERTY_NOTIFY = 0x10,
BT_GATT_CHAR_PROPERTY_INDICATE = 0x20,
BT_GATT_CHAR_PROPERTY_AUTH_SIGNED_WRITE = 0x40

} gatt_char_properties_t;

5.4.1.2 Characteristic descriptor properties

typedef enum {
BT_GATT_DESC_PROPERTY_BROADCAST = 0x01,
BT_GATT_DESC_PROPERTY_READ = 0x02,
BT_GATT_DESC_PROPERTY_WRITE_NO_RESPONSE = 0x04,
BT_GATT_DESC_PROPERTY_WRITE = 0x08,
BT_GATT_DESC_PROPERTY_NOTIFY = 0x10,
BT_GATT_DESC_PROPERTY_INDICATE = 0x20,
BT_GATT_DESC_PROPERTY_AUTH_SIGNED_WRITE = 0x40

} gatt_desc_properties_t;

5.4.1.3 Attribute Permissions

typedef enum {
BT_GATT_PERM_READ = 0x01,
BT_GATT_PERM_WRITE = 0x02,
BT_GATT_PERM_READ_ENCYPT = 0x04,
BT_GATT_PERM_WRITE_ENCRYPT = 0x08,
BT_GATT_PERM_ENCRYPT = 0x04 | 0x08,
BT_GATT_PERM_READ_AUTHEN = 0x10,
BT_GATT_PERM_WRITE_AUTHEN = 0x20,
BT_GATT_PERM_AUTHEN = 0x10 | 0x20,
BT_GATT_PERM_AUTHOR = 0x40,
BT_GATT_PERM_NONE = 0x80

} gatt_permissions_t;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 45

文档密级：秘密

5.4.1.4 回调函数与参数相关结构体

（1）回调函数

typedef struct {
bt_gatt_add_service_cb gatt_add_svc_cb; //增加一个service的回调函数
bt_gatt_add_char_cb gatt_add_char_cb; //增加一个characteristic的回调函数
bt_gatt_add_desc_cb gatt_add_desc_cb; //增加一个descriptor的回调函数

bt_gatt_connection_event_cb gatt_connection_event_cb; //gatt连接和断开事件回调函数
bt_gatt_sevice_ready_cb gatt_service_ready_cb; //gatt启动service成功后回调该函数

bt_gatt_char_read_req_cb gatt_char_read_req_cb; //
bt_gatt_char_write_req_cb gatt_char_write_req_cb;
bt_gatt_char_notify_req_cb gatt_char_notify_req_cb;

bt_gatt_desc_read_req_cb gatt_desc_read_req_cb; //client读xuansdescriptor回调函数
bt_gatt_desc_write_req_cb gatt_desc_write_req_cb;//client写descriptor回调函数

bt_gatt_send_indication_cb gatt_send_indication_cb;//service通知或指示回调函数
} gatt_server_cb_t;

（2）回调的参数

gatt server 连接事件

typedef enum {
BT_GATT_CONNECTION,
BT_GATT_DISCONNECT,

} gatt_connection_event_t;

增加一个 Characteristic 回调函数参数

typedef struct {
int num_handle; //service中一共有多少个handle
int svc_handle; //表征service的handle

} gatt_add_svc_msg_t;

增加一个 server 回调函数参数

typedef struct {
char *uuid;
int char_handle;

} gatt_add_char_msg_t;

增加一个 descriptor 回调函数参数

typedef struct {
int desc_handle;

} gatt_add_desc_msg_t;

client 读请求回调函数参数

版权所有 © 珠海全志科技股份有限公司。保留一切权利 46

文档密级：秘密

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset; //大量数据读取的偏移
bool is_blob_req; //是否大量数据读取，client端对一次大量数据读取可以分多次完成

} gatt_char_read_req_t;

client 写请求回调函数参数

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset;
char value[AG_GATT_MAX_ATTR_LEN];
int value_len;
bool need_rsp;
/*是否需要回复，client如果是write req是需要回复的，如果是write cmd不需要回复。*/

} gatt_char_write_req_t;

descriptor 读请求回调函数参数

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset;
bool is_blob_req;

} gatt_desc_read_req_t;

descriptor 写请求回调函数参数

typedef struct {
unsigned int trans_id;
int attr_handle;
int offset;
char value[AG_GATT_MAX_ATTR_LEN];
int value_len;
bool need_rsp;

} gatt_desc_write_req_t;

5.4.1.5 服务注册相关结构体

增加一个服务函数的参数类型

typedef struct {
char *uuid; /*128-bit service UUID*/
bool primary; /* If true, this GATT service is a primary service */
int number;

} gatt_add_svc_t;

增加一个 characteristic 函数的参数类型

版权所有 © 珠海全志科技股份有限公司。保留一切权利 47

文档密级：秘密

typedef struct {
char *uuid; /*128-bit characteristic UUID*/
int properties; /*The GATT characteristic properties*/
int permissions; /*The GATT characteristic permissions*/
int svc_handle; /*the service atr handle*/

} gatt_add_char_t;

增加一个 descriptor 函数的参数类型

typedef struct {
char *uuid; /*128-bit descriptor UUID*/
int properties; /*The GATT descriptor properties*/
int permissions; /*he GATT descriptor permissions*/
int svc_handle;

} gatt_add_desc_t;

启动一个 service 函数的参数类型

typedef struct {
int svc_handle;

} gatt_star_svc_t;

停止一个 service 函数的参数类型

typedef struct {
int svc_handle;

} gatt_stop_svc_t;

删除一个 service 函数的参数类型

typedef struct {
int svc_handle;

} gatt_del_svc_t;

service 回复 client 读操作函数的参数类型

typedef struct {
unsigned int trans_id;
int status;
int svc_handle;
char *value;
int value_len;
int auth_req;

} gatt_send_read_rsp_t;

service 回复 client 写操作函数的参数类型

typedef struct {
unsigned int trans_id;
int attr_handle;
gatt_attr_res_code_t state;

} gatt_write_rsp_t;

service 通知 client 的参数类型

版权所有 © 珠海全志科技股份有限公司。保留一切权利 48

文档密级：秘密

typedef struct {
int attr_handle;
char *value;
int value_len;

} gatt_notify_rsp_t;

service 指示 client 的参数类型

typedef struct {
int attr_handle;
char *value;
int value_len;

} gatt_indication_rsp_t;

5.4.1.6 广播类结构体

gatt 广播数据结构体

typedef struct gatt_adv_data_t {
uint8_t data[31];
uint8_t data_len;

} gatt_adv_data_t;

gatt 回复 scan 广播数据结构体

typedef struct gatt_rsp_data_t {
uint8_t data[31];
uint8_t data_len;

} gatt_rsp_data_t;

gatt 广播属性参数

typedef struct {
uint16_t min_interval;//广播最小时间间隔
uint16_t max_interval;//广播最大时间间隔
gatt_le_advertising_type_t adv_type; //广播类型
gatt_le_addr_type_t own_addr_type; //广播地址
gatt_le_peer_addr_type_t peer_addr_type; //广播对端地址
char peer_addr[18];
uint8_t chan_map;
gatt_le_advertising_filter_policy_t filter;//广播过滤类型

} gatt_le_advertising_parameters_t;

5.4.2 初始化 API

5.4.2.1 gatt server 初始化

版权所有 © 珠海全志科技股份有限公司。保留一切权利 49

文档密级：秘密

函数原型 int bt_manager_gatt_server_init(gatt_server_cb_t *cb)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 初始化函数

5.4.2.2 gatt server 反初始化

函数原型 int bt_manager_gatt_server_deinit(void)

参数说明 无
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 反初始化

5.4.3 服务注册类函数

5.4.3.1 创建一个服务

函数原型 intbt_manager_gatt_create_service(gatt_add_svc_t *svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 创建一个服务

5.4.3.2 添加一个 characteristic

函数原型 int bt_manager_gatt_add_characteristic(gatt_add_char_t *chr)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 指定服务中添加 characteristic

5.4.3.3 添加一个 descriptor

函数原型 int bt_manager_gatt_add_descriptor(gatt_add_desc_t *desc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 50

文档密级：秘密

函数原型 int bt_manager_gatt_add_descriptor(gatt_add_desc_t *desc)

功能描述 指定服务中添加 descriptor

5.4.3.4 启动一个服务

函数原型 int bt_manager_gatt_start_service(gatt_star_svc_t *start_svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 启动 gatt service

5.4.3.5 停止一个服务

函数原型 int bt_manager_gatt_stop_service(gatt_stop_svc_t *stop_svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 停止一个 gattservice

5.4.3.6 删除一个服务

函数原型 int bt_manager_gatt_delete_service(gatt_del_svc_t *del_svc)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 删除一个 gatt service，删除后如果还要使用，需要重新注册

5.4.4 服务操作类函数

5.4.4.1 回复 client 读请求

函数原型
int bt_manager_gatt_send_read_response(gatt_send_read_rsp_t
*pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 51

文档密级：秘密

函数原型
int bt_manager_gatt_send_read_response(gatt_send_read_rsp_t
*pData)

功能描述 client 端读取 server 属性的时候，会激活对应的回调函数，server 通过该
函数回复读请求的内容

5.4.4.2 回复 client 写请求

函数原型 int bt_manager_gatt_send_write_response(gatt_write_rsp_t *pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 client 端写 server 属性的时候，会激活对应的回调函数，server 通过该函

数回复写请求，以通知 client 写是否成功

5.4.4.3 通知 client

函数原型 int bt_manager_gatt_send_notification(gatt_notify_rsp_t *pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 通过该函数通知 client 消息，client 不需要回复

5.4.4.4 指示 client

函数原型 int bt_manager_gatt_send_indication(gatt_indication_rsp_t *pData)

参数说明 见 5.4.1.5
返回说明 int 0: 成功；-1: 失败。
功能描述 gatt server 通过该函数指示 client 消息，client 需要回复

5.4.5 ble gap API

5.4.5.1 设置随机地址

函数原型 int bt_manager_gatt_set_random_address(void)

参数说明 无

版权所有 © 珠海全志科技股份有限公司。保留一切权利 52

文档密级：秘密

函数原型 int bt_manager_gatt_set_random_address(void)

返回说明 int 0: 成功；-1: 失败。
功能描述 ble 设备使用随机地址

5.4.5.2 使能广播

函数原型
int bt_manager_gatt_enable_adv(bool enable,
gatt_le_advertising_parameters_t *adv_param)

参数说明 enable: 启动或关闭广播，adv_param：广播属性参数，见 5.4.1.6
返回说明 int 0: 成功；-1: 失败。
功能描述 使能广播

5.4.5.3 设置广播数据

函数原型 int bt_manager_gatt_set_adv_data(gatt_adv_data_t *adv_data)

参数说明 见 5.4.1.6
返回说明 int 0: 成功；-1: 失败。
功能描述 设置广播数据，数据的格式需要按照 2.1.2.4 中的格式要求

5.4.6 总结 API 的使用说明

gatt server API 的使用步骤主要是以下几点

• 初始化 gatt server，调用 bt_manager_gatt_server_init 函数，其功能主要是将蓝牙协议
run 起来。

• 注册相关的回调函数，包括构建 server，读、写、通知、指示等。
• 构建一个 server，主要包括创建一个 service（bt_manager_gatt_create_service），
填充 service 中的内容特性内容和描述信息（bt_manager_gatt_add_characteristic，
bt_manager_gatt_add_descriptor）。

• 构建完成一个 server 后，就可以启动 server 了（bt_manager_gatt_start_service）
• 使能广播，设置广播参数（bt_manager_gatt_enable_adv）。
• 如果需要，还可以设置广播的数据（bt_manager_gatt_set_adv_data）。

详情的使用例子可参考：

package/allwinner/btmanager/demo/gatt_server_test.c
小机端执行：gatt_server_test，接着再执行test，就可以用手机ble app进行连接读写server。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 53

文档密级：秘密

6 demo 使用指南

测试蓝牙的命令是 bt_test, 该 app 可以后台运行，也可以交互运行。

启动运行帮助命令：

root@TinaLinux:/# bt_test -h
Usage:
[OPTION]...

Options:
-h, --help print this help and exit
-d, --debug open debug :-d [0~5]
-s, --stop stop bt_test
-p, --profile=NAME enable BT profile
-i, --interaction interaction
- a2dp-source Advanced Audio Source
- a2dp-sink Advanced Audio Sink
- hfp-hf Hands-Free
- hfp-ag Hands-Free Audio Gateway
- hsp-hs Headset
- hsp-ag Headset Audio Gateway

后台模式：

bt_test

交互模式：

bt_test -i

交互式命令列表：

[bt]#help
Available commands:

enable enable [0/1]: open bt or not
scan scan [0/1]: scan for devices
scan_list scan_list: list available devices
pair pair [mac]: pair with devices
unpair uppair [mac]: unpair with devices
paired_list paired_list: list paired devices
get_state get_state: get bt state
get_name get_name: get bt name
set_name set_name [name]: set bt name
get_addr get_addr: get bt address
set_dis set_dis [0~2]:0-NONE,1-page scan,2-inquiry scan&

page scan
avrcp avrcp [play/pause/stop/fastforward/rewind/forward/

backward]: avrcp control
profile_cn profile_cn [mac]:a2dp sink connect
profile_dis profile_dis [mac]:a2dp sink disconnect

版权所有 © 珠海全志科技股份有限公司。保留一切权利 54

文档密级：秘密

connect connect [mac]:generic method to connect
disconnect disconnect [mac]:generic method to disconnect
remove remove [mac]:removes the remote device
a2dp_src_start a2dp_src_start:start a2dp source playing
a2dp_src_stop a2dp_src_stop:stop a2dp source playing
remove remove [mac]:removes the remote device
hfp_answer hfp_answer: answer the phone
hfp_hangup hfp_hangup: hangup the phone
hfp_dial hfp_dial [num]: call to a phone number
hfp_cnum hfp_cum: Subscriber Number Information
hfp_last_num hfp_last_num: calling the last phone number dialed
hfp_vol hfp_vol [0~15]: update phone volume.
get_version get_version: get btmanager version
debug debug [0~5]: set debug level
ex_dbg ex_dbg [mask]: set ex debug mask

6.1 a2dp sink 测试步骤
1. 终端执行：bt_test -p a2dp-sink 或者 bt_test -p a2dp-sink -i (将进入交互模式)
2. 使用手机打开蓝牙，搜索"aw-bt-test-xxxx"的设备，并进行链接
3. 手机打开播放器app，进行播放音乐，设备端将同步输出声音

6.2 a2dp Souce 测试步骤
a2dp source 模式必须要交互模式运行:bt_test -i

1. 用adb先将音频文件push 到/tmp目录下，并命名为44100-stereo-s16_le-10s.wav。音频文件可以从tina sdk中
以下路径获取：

tina/package/testtools/testdata/audio_wav/common/44100-stereo-s16_le-10s.wav

2. 执行：bt_test -i -p a2dp-source

3. 扫描指定设备获取到mac地址：scan 1，扫描到后停止扫描：scan 0,获取已经扫描到的设备：scan_list

4. 连接指定蓝牙音响：connect mac_address(connect 40:EF:4C:7B:77:ED)

5. 连接成功提示"connect.."字样 。
6. 开始播放：a2dp_src_start 。
7. 停止播放：a2dp_src_stop。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 55

文档密级：秘密

6.3 avrcp 测试步骤
1. 在 a2dp sink 测试步骤前提下（执行：bt_test -p a2dp-sink -i 进入交互模式）。
2. 分别执行：avrcp play/pause/stop/fastforward/rewind/forward/backward 可进行音乐播放，暂停，快

进，快退，上下曲等操作。

6.4 gatt server 测试步骤
1. 执行：gatt_server_test。
2. 执行：test。
3. 手机app（ble scanner或nrf connect）。
4. 连接到"aw-bt-testxx"字样的蓝牙服务。
5. 对uuid为3334分别进行read和write操作。
6. read操作时手机app会收到数字累计增加。
7. write操作时手机app发送的字符会显示在样机的串口终端上。

6.4.0.1 hfp client 测试步骤

1. 执行: bt_test -i。
2. 手机连接上蓝牙设备 。
3. 来电接听：hfp_answer 。
4. 来电拒绝:hfp_hangup 。
5. 样机拨号：hfp_dial 10001 。
6. 样机拨打上一个电话:hfp_last_num 。
7. 样机获取手机:hfp_cnum。

6.4.1 配置文件

经典蓝牙涉及到的配置文件为 bt_init.sh 和 Bluetooth.json 两个文件，前者主要功能是将蓝牙
协议栈带起来，请参考 3.1 章节，而 Bluetooth.json，请参考如下：

{
"profile":{

"a2dp_sink":1,
"a2dp_source":0,
"avrcp":1,
"hfp_hf":1,
"hfp_ag":0,
"gatt_client":0,
"gatt_server":0

},
"a2dp_sink":{

"device":"default",
"buffer_size":30080,
"period_size":3760

版权所有 © 珠海全志科技股份有限公司。保留一切权利 56

文档密级：秘密

},
"a2dp_source":{

"hci_index":0,
"DEV":"00:00:00:00:00:00",
"DELAY":20000

},
"hfp_pcm":{

"rate":16000,
"phone_to_dev_cap":"hw:snddaudio1",
"phone_to_dev_play":"default",
"dev_to_phone_cap":"CaptureMic",
"dev_to_phone_play":"hw:snddaudio1"

}
}

• profile条目:表示默认需要使能的 profile，当用户没有主动调用 bt_manager_enable_profile
使能那些 profile 时，将默认从这个条目进行读取配置，使能那些 profile。

• a2dp_sink条目:该条目主要是用 a2dp sink播放音频相关的配置，device表示使用的硬件声
卡，buffer_size为对应 alsa参数的 buffer size，period_size对应 alsa参数 period size。

• a2dp_source: 用于 a2sp_source 的配置参数，暂时未用到。
• hfp_pcm：用于 hfp over pcm 的参数配置，rate 表示蓝牙 pcm 用的采样率，跟蓝牙模组有
关；phone_to_dev_cap 表示主控端从蓝牙模组获取蓝牙通话音频的声卡（手机先传给蓝牙模
组，蓝牙模组再通过 i2s传给主控端，也就是对端手机讲话的声音），phone_to_dev_play对
端手机讲话的声音在主控端进行播放的声卡，dev_to_phone_cap 表示我录制我方讲话声音的
声卡，dev_to_phone_play 表示我方声音写入蓝牙模组的声卡（传输到对端手机中）。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 57

文档密级：秘密

7 蓝牙常见问题排查指南

7.1 排查指南顺序
• 1 根据模组型号确认 3.2 小节的配置正确。
• 2 根据原理图检查 bt 的上电 gpio（包括 reset pin，wake ap，hostwake）、uart 号等。
• 3 检查 bt_init.sh 脚本是否正确，XR829 和 RTL8723DS 各一份，可参考标案下的配置。

RTL8723DS：
编译路径：
tina/package/allwinner/btmanager/config/realtek_bt_init.sh
样机路径：
/etc/Bluetooth/bt_init.sh

注意：
如果模组是H4协议："$bt_hciattach" -n -s 115200 /dev/ttyS1 rtk_h4
如果模组是H5协议："$bt_hciattach" -n -s 115200 /dev/ttyS1 rtk_h5

XR829
编译路径：
tina/package/allwinner/btmanager/config/xradio_bt_init.sh
样机路径：
/etc/Bluetooth/bt_init.sh

• 4 检查 Bluetooth.json 文件，尤其注意声卡选择是否正确，参考 4.6.1

编译路径：
target/allwinner/r329-evb5/base-files/etc/Bluetooth/Bluetooth.json
样机路径：
/etc/Bluetooth/Bluetooth.json

版权所有 © 珠海全志科技股份有限公司。保留一切权利 58

文档密级：秘密

著作权声明

版权所有 ©2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 59

	概述
	编写目的
	适用范围
	相关人员

	Bluetooth简介
	Bluetooth Controller
	BR/EDR Controller
	LE Controller
	LE Device address
	Physical channel
	LE广播通信
	AdvData和ScanRspData格式

	Bluetooth HOST

	Tina蓝牙协议栈介绍
	运行tina蓝牙协议栈
	蓝牙上电

	bluez协议栈配置

	经典蓝牙
	GAP
	A2DP
	AVRCP
	HFP
	经典蓝牙API使用说明
	btmanager数据结构说明
	log控制等级
	BT状态
	BT扫描模式
	BT绑定状态
	BT A2dp_sink连接状态
	BT A2dp_sink stream状态
	BT AVRCP状态
	BT AVRCP命令
	BT音乐信息
	回调函数

	初始化API
	设置打印级别
	获取打印级别
	预初始化
	初始化
	反初始化

	GAP协议API
	设置模式
	profile默认使能
	蓝牙使能
	配对回复确认
	配对自动回复
	启动扫描
	停止扫描
	判断是否在扫描状态
	蓝牙配对
	取消配对
	获取状态
	获取本地蓝牙名称
	设置本地蓝牙名称
	获取mac地址
	指定profile连接
	指定profile断开连接
	蓝牙通用连接
	蓝牙通用断开
	移除设备

	A2dp sink协议相关API
	A2dp Source API
	初始化
	反初始化
	开始启动播放
	发送音频数据
	停止播放

	AVRCP API
	音频控制
	音量控制

	HFP API
	接听电话
	拒接或挂断电话
	指定号码拨号
	拨打上一次电话
	获取本机号码

	API调用指南

	蓝牙低功耗
	Attribute
	Attribute Type
	Attribute Handle
	Attribute Value
	Attribute Permissions

	GATT
	GATT Server
	GATT Server API介绍
	GATT Server 常见的数据结构
	characteristic properties
	Characteristic descriptor properties
	Attribute Permissions
	回调函数与参数相关结构体
	服务注册相关结构体
	广播类结构体

	初始化API
	gatt server初始化
	gatt server反初始化

	服务注册类函数
	创建一个服务
	添加一个characteristic
	添加一个descriptor
	启动一个服务
	停止一个服务
	删除一个服务

	服务操作类函数
	回复client读请求
	回复client写请求
	通知client
	指示client

	ble gap API
	设置随机地址
	使能广播
	设置广播数据

	总结API的使用说明

	demo使用指南
	a2dp sink测试步骤
	a2dp Souce测试步骤
	avrcp测试步骤
	gatt server测试步骤
	hfp client测试步骤
	配置文件

	蓝牙常见问题排查指南
	排查指南顺序

