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1.1 XHEfET

7148 Sunxi ¥ & RTOS Lt G2D K& hal BI—MRERHERIFHZED, AARSERREHESE,

1.2 &M

\/ Ii
]

® 1-1: AR

= am R R L EATES IR A4
V833 Melis rtes-hal/hal/source/g2d rcq/
F133 Melis rtos-hal/hal/source/g2d_rcq/

1.3 BirEE

G2D WRzhie i AR BYFF & /4650 A 1o
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G2D FRapFELMEGIEE/AIERR/EETEER, UNRERFESMINEE (2FF8HE alpha. col-
orkey. rotate. mirror. rop. maskblt) FEFINEINEE,

2.1 &Y format

G2D FORMAT ARGB8888/G2D FORMAT ARGB8888/G2D FORMAT ABGR8888/
G2D FORMAT RGBA8888/G2D FORMAT BGRA8888/G2D FORMAT XRGB88SS,
G2D FORMAT XBGR8888/G2D FORMAT RGBX8888/G2D FORMAT BGRX8888/
G2D FORMAT RGB888/G2D FORMAT BGR888/G2D FORMAT RGB565,

G2D FORMAT BGR565/G2D FORMAT ARGB4444/G2D FORMAT ABGR4444/
G2D FORMAT RGBA4444/G2D FORMAT BGRA4444/G2D FORMAT ARGB1555,
G2D FORMAT ABGR1555/G2D FORMAT RGBA5551/G2D FORMAT BGRA5551/
G2D FORMAT ARGB2101010/G2D FORMAT. ABGR2101010,

G2D FORMAT RGBA1010102/G2D FORMAT BGRA1010102

G2D FORMAT AYUV422 VOY1U0Y0,
G2D FORMAT IYUV422 Y1VOYOUO,
G2D FORMAT IYUV422 UO0Y1V0YO,
G2D_FORMAT IYUV422 Y1UOYOVO),
G2D FORMAT YUV422UVC V1ULVOUO,
G2D FORMAT YUV422UVC_W1V1U0Vo,
G2D FORMAT YUV422 PLANAR,
G2D_FORMAT YUV420UVC V1U1V0UO,
G2D FORMAT YUV420UVC U1V1UOVO,
G2D FORMAT YUV420 PLANAR,

G2D FORMAT YUV411UVC V1U1V0UO,
G2D_FORMAT YUV411UVC U1V1UOVO,
G2D FORMAT YUV411 PLANAR,

G2D FORMAT Y8,

G2D FORMAT YVU10 P010,
G2D FORMAT YVU10 P210,
G2D FORMAT YVU10 444,
G2D FORMAT YUV10 444,

WRAFRE © BseEREROERAE. RE—TNF 2
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2.2 El=E size

EIEH size 1HXHIB8%%E Image size. source rect UMK dest recto,

e Image size 5B R buffer B4, sTLIRRAERNRKRTENKN,

e source rect BIEEF clip KIFHUESRY (G2D Rahz#F clip REMNER, WAL clip
BRAPE—RKIE) ;

e dest rect MIANEF dest Image EETRRRFTHAUESRT., NRZE Stretchblt, source
rect 5 dest rect WEESIIUA—, HMWTEEXNER, XTENZ—H.

MTEMT, CEXEATENERRY, RFBEEXBEUWAIER clip X5, Bl source
rect; AEBEGKXIHA dest image, little dog XIEN A source rect M1 % dest image
XiI%HY dest recto

Dest image

Dest
buffer
height

F urce buffer height

dest rect Dest buffer width

2-1: clip size ~"EE

2.3 %EAZIEZE (fill color rectgngle)

IRFEREAZ X1 ThRE PT LASC IR SR K 1T HIT R B IR, WM TEmMIERT 0xFFO080FF
B9 ARGB {8, ZINEEERAI LUBTIRESIEKIEANEMBERMEL, FISEAILLUETIZTE flag 5k
R—MEZZEEM BTN alpha 158,
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2.4 TE¥MEE& (rotate and mirror)

EESEGETES LM T Horizontal. Vertical. Rotate180°. Mirror45°. Rotate90°.
Mirror135°. Rotate270°7 Fig{E,

2-3: rotate and mirror TREE

2.5 alpha blending

AREIVEREZ 88 LU alpha blending, Alpha %39 pixel alpha. plane alpha. multialpha
=
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¢ pixel alpha BEASMEEBEHE—1%JE alpha &,

¢ plane alpha MR—1EEHFFAEGREEE— globe alpha &

e multi alpha MEMEEERN alpha EZEBIHEA globe alpha*pixel alpha, B LUES
G2D FEpiEOM flag EiFHl.

2-4: alpha blending ~"EE

TS

Dhixtizerteon
* Lresiingh on
L

riech

destimenion codior ke

2-5: alpha blending ~EE

2.6 colorkey

RE image ZiEIA LA colorkey MR, MRITo

o KB destination Bk =T source, destination # match #49 (BEAAHEI
), WEFRBEE, BRA source 5 destination ff alpha blending /8 EE,

o HEF source WKL RET destination, M source F match 9 CROBRAESS
53) , WHEEREY, HIZER destination 5 source f# alpha blending FHERE,
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TxE EE
L

msch

destieniom eolior key

2-6: colorkey mEE

2.7 48K (Stretchblt)

Stretchblt ZE 2 source &M destination B size H1THEN, HRARS destination
alpha blending. colorkey FizBHEHIZEZHRGEENEBR, WEOFE 1.0 xR ELFEHET
LIhe 4 —ic i, B2 2.0 lRa&LlfE, FaiflieikAn] LUERTIgE.

StretchBlt

Destination

2-7: scale and alpha blending REE]

2.8 ZoiEMiE{E (rop2)

BINEELSMERXENHEREEN BRGRASFIRNERGER.
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2.9 =oitMi2(E (maskblt rop3)

S FEGERFEAMHRER TERSMHRIHRYER, HINBRENE =GR FE%GER, BffE®R
%B&, BRIGERE (BIREGER). ITEFFR, MELEEIAET25)RZ src ptn mask dst.

Prarradies-

2-8: mask ~=E
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G2D RREFBEENSHIEGLER G2D FEHSEAMu, PifsS, EREESHATRE rtos-
hal/hal/source/g2d rcq/g2d.c RMENIEE, W FFR:

#define SUNXI_GIC START 32
#define SUNXI IRQ G2D (SUNXI GIC START + 21)
#define SUNXI G2D START 0x01480000

BT SRR HER V833 FALUMIAEMT S, M ERERNF MRS, ELZH 5 SOC F
8B MNAEN R F SRR HITE B,
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4.1 g2d blt flags

e DESCRIPTION g2d_blt flags AF##R— bitblt 1 stretchblt A9 flag BMER

e PROTOTYPE

typedef enum {
G2D_BLT NONE
G2D BLT PIXEL ALPHA
G2D _BLT_PLANE_ALPHA
G2D BLT MULTI ALPHA
G2D BLT SRC_COLORKEY
G2D _BLT DST COLORKEY

= O0x00000000,
= 0x00000001,
= 0x00000002,
= Ox00000004,
= O0x00000008,
= 0x00000010,

G2D BLT _FLIP_HORIZONTAL = 0x00000020,

G2D BLT FLIP VERTICAL = 0x00000040,
G2D BLT ROTATE90 = 0x00000080,
G2D BLT ROTATE180 = 0x00000100,
G2D BLT ROTATE270 = 0x00000200,
G2D BLT MIRROR45 = 0x00000400,
G2D BLT MIRROR135 = 0x00000800,

}g2d blt flags;

¢ MEMBERS

G2D BLT NONE - diEn

G2D BLT PIXEL ALPHA .- malphatris

G2D BLT PLANE ALPHA - MHalphatf&

G2D BLT MULTI ALPHA - SE&alphatrd

G2D_BLT SRC_COLORKEY - JFcolorkeytr

G2D BLT DST COLORKEY - BtFcolorkeytrd

G2D BLT FLIP HORIZONTAL - KFER%%

G2D BLT FLIP VERTICAL - EEHEE

G2D BLT ROTATEQO - PETETRERE90E

G2D BLT ROTATE180 - EEEER 180E

G2D BLT ROTATE270 - WBIEHERE 270

G2D BLT MIRROR45 - BIR45E

G2D BLT MIRROR135 - BBI35E

4.2 g2d fillrect flags

e DESCRIPTION g2d fillrect flags BF#ER— fillrect B E R

IR © HiB2EREROBIRAR. RE—INF
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¢ PROTOTYPE

typedef enum {

G2D FIL NONE = 0x00000000,
G2D_FIL PIXEL ALPHA = 0x00000001,
G2D_FIL PLANE ALPHA = 0x00000002,
G2D FIL MULTI ALPHA = 0x00000004,

}g2d fillrect flags;

¢ MEMBERS

G2D_FIL NONE - dE%R

G2D_FIL PIXEL ALPHA - EzZKXIHFMBrf=alpha

G2D_FIL_PLANE_ALPHA - EZKXIHFMBirEalpha

G2D FIL MULTI ALPHA

HExEXEMalphalE*EalphalBEEMBR#alpha

4.3 g2d data fmt(version 1.0)

e DESCRIPTION

g2d data fmt BFHEREERR

e PROTOTYPE

1.0 A2 H5RIEBAS T

typedef enum {
G2D_FMT ARGB_AYUV8888 = (0x0),

G2D FMT BGRA VUYA8888 = = (0x1),
G2D _FMT ABGR AVUY8888 = = (0x2),
G2D_FMT RGBA YUVA8888 = (0x3),
G2D FMT XRGB8888 = (0x4),
G2D FMT BGRX8888 =A0x5),
G2D FMT XBGR8888 = (0x6),
G2D_FMT RGBX8888 = (0x7),
G2D_FMT ARGB4444 = (0x8),
G2D_FMT ABGR4444 = (0x9),
G2D_FMT RGBA4444 = (0xA),
G2D FMT BGRA4444 = (0xB),
G2D_FMT ARGB1555 = (0xC),
G2D_FMT ABGR1555 = (0xD),
G2D_FMT_RGBA5551 = (OXE),
G2D_FMT BGRA5551 = (OxF),
G2D_FMT RGB565 = (0x10),
G2D_FMT BGR565 = (0x11),
G2D_FMT_IYUV422 = (0x12),
G2D_FMT_8BPP_MONO = (0x13),
G2D_FMT_4BPP_MONO = (0x14),
G2D_FMT 2BPP_MONO = (0x15),
G2D FMT 1BPP_MONO = (0x16),
G2D FMT PYUV422UVC = (0x17),
G2D_FMT_PYUV420UVC = (0x18),
G2D_FMT_PYUV411UVC = (0x19),

IR © HiB2EREROBIRAR. RE—INF
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RERBEAEER:
G2D_FMT_PYUV422 =
G2D_FMT_PYUV420 =
G2D_FMT PYUV411 =

REWAA TS
G2D_FMT 8BPP_PALETTE =
G2D_FMT 4BPP_PALETTE =
G2D FMT 2BPP PALETTE =
G2D FMT 1BPP PALETTE =
G2D_FMT PYUV422UVC MB16 =
G2D_FMT_PYUV420UVC_MB16 =
G2D_FMT _PYUV411UVC_MB16 =
G2D_FMT PYUV422UVC MB32 =
G2D_FMT PYUV420UVC MB32 =
G2D_FMT PYUV411UVC MB32 =
G2D_FMT PYUV422UVC MB64 =
G2D_FMT_PYUV420UVC_MB64 =
G2D_FMT PYUV411UVC_MB64 =
G2D_FMT_PYUV422UVC_MB128=
G2D_FMT PYUV420UVC MB128=
G2D_FMT PYUV411UVC MB128=

(0x1A),
(0x1B),
(0x1C),

(0x1D),
(Ox1E),
(Ox1F),
(0x20),
(0x21),
(0x22),
(0x23),
(0x24),
(0x25),
(0x26),
(0x27),
(0x28),
(0x29),
(0x2A),
(0x2B),
(0x2C),

}g2d data fmt;

¢ MEMBERS

G2D FMT ARGB8888
G2D_FMT BGRA8888
G2D_FMT ABGR8888
G2D_FMT RGBA8888

G2D FMT XRGB8888
G2D_FMT BGRX8888
G2D_FMT XBGR8888
G2D_FMT RGBX8888

G2D_FMT ARGB4444
G2D FMT BGRA4444
G2D_FMT ABGR4444
G2D_FMT RGBA4444
G2D_FMT ARGB1555
G2D_FMT BGRA1555
G2D FMT ABGR1555
G2D FMT RGBA1555

G2D_FMT_RGB565
G2D_FMT BGR565

G2D_FMT_IYUV422

G2D_FMT_8BPP_MONO
G2D_FMT_4BPP_MONO
G2D_FMT 2BPP_MONO
G2D_FMT 1BPP_MONO

G2D_FMT_PYUV422UVC
G2D_FMT_PYUV420UVC

: alpha(8bit)R(8bit)G(8bit)B(8bit)
: B(8bit)G(8bit)R(8bit)alpha(8bit)
: alpha(8bit)B(8bit)G(8bit)R(8bit)
: R(8bit)G(8bit)B(8bit)alpha(8bit)

: 24bit,RGB&8bit,alphauEiIEsNEF NOXFF
: 24bit,BGR&Z8bit,alpha MR EENEFTHOXFF
: 24bit,BGR&8bit,alphalS{iiBENtEFENOXFF
: 24bit,RGB&8bit,alphalufffi B ENtEFEIOXFF

: alpha(4bit)R(4bit)G(4bit)B(4bit)
: B(4bit)G(4bit)R(4bit)alpha(4bit)
T alpha(4bit)B(4bit)G(4bit)R(4bit)
: R(4bit)G(4bit)B(4bit)alpha(4bit)
: alpha(1lbit)R(5bit)G(5bit)B(5bit)
: B(5bit)G(5bit)R(5bit)alpha(1lbit)
: alpha(1lbit)B(5bit)G(5bit)R(5bit)
: R(5bit)G(5bit)B(5bit)alpha(1lbit)

: R(5bit)G(6bit)B(5bit)
: B(5bit)G(6bit)R(5bit)

: Interleaved YUV422

: 8bit per pixel mono
: 4bit per pixel mono
: 2bit per pixel mono
: 1bit per pixel mono

: Planar UV combined only
: Planar UV combined only

IR © HiB2EREROBIRAR. RE—INF
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G2D FMT PYUV411UVC : Planar UV combined only

G2D_FMT_PYUV422 : Planar YUV422
G2D_FMT_PYUV420 : Planar YUV420
G2D_FMT_PYUV411 : Planar YUV411

G2D _FMT 8BPP_PALETTE: 8bit per pixel palette only for input
G2D FMT 4BPP_PALETTE: 4bit per pixel palette only for input
G2D FMT 2BPP_PALETTE: 2bit per pixel palette only for input
G2D_FMT 1BPP _PALETTE: 1lbit per pixel palette only for input

G2D FMT PYUV422UVC MB16: 16x16 tile base planar uv combined only for input
G2D FMT PYUV420UVC MB16: 16x16 tile base planar uv combined only for input
G2D FMT PYUV411UVC MB16: 16x16 tile base planar uv combined only for input
G2D FMT PYUV422UVC MB32: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV420UVC MB32: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV411UVC MB32: 16x16 tile base planar uv combined only for input
G2D _FMT PYUV422UVC MB64: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV420UVC MB64: 16x16 tile base planar uv combined only for input
G2D_FMT_PYUV411UVC MB64: 16x16 tile base planar uv combined only for input
G2D_FMT_PYUV422UVC_MB128: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV420UVC MB128: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV411UVC MB128: 16x16 tile base planar uv combined only for input

4.4 g2d pixel seq(version 1.0)

e DESCRIPTION g2d pixel seq BTFHiRGREF
e PROTOTYPE

typedef enum {

G2D_SEQ_NORMAL = 0x0,
G2D_SEQ VYUY = 0x1,
G2D SEQ YVYU = 0x2,
G2D SEQ VUWU £ 0x3,
G2D_SEQ P10 = 0x4,
G2D_SEQ_PO1 = 0x5,
G2D_SEQ P3210 = 0x6,
G2D SEQ P0123 = 0x7,
G2D SEQ P76543210 = 0x8,
G2D_SEQ_P67452301 = 0x9,
G2D_SEQ_P10325476 = OXA,
G2D_SEQ_P01234567 = 0xB,
G2D_SEQ 2BPP BIG BIG = 0xC,

G2D SEQ 2BPP BIG LITTER = 0xD,
G2D SEQ 2BPP_LITTER BIG = OXE,
G2D_SEQ 2BPP_LITTER LITTER = OxF,
G2D_SEQ_1BPP_BIG BIG = 0x10,
G2D SEQ 1BPP BIG LITTER = 0x11,
G2D SEQ 1BPP_LITTER BIG = 0x12,
G2D SEQ 1BPP LITTER LITTER = 0x13,

} g2d pixel seq;

¢ MEMBERS

IR © HiB2EREROBIRAR. RE—INF
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G2D SEQ_NORMAL : Normal sequence
//for interleaved yuv422
G2D_SEQ VYUY : pixel OTE{E161i
G2D_SEQ_YVYU : pixel 1TE{E161i
// for uv_combined yuv420
G2D_SEQ VUvU : Planar VU combined only
// for 16bpp rgb
G2D SEQ P10 1 pixel OTE{E16fI
G2D SEQ P01 1 pixel 17E{E161i
// planar format or 8bpp rgb
G2D_SEQ P3210 : pixel OTE{HES8{i
G2D_SEQ P0123 1 pixel 3TE{E8{i
// for 4bpp rgb
G2D SEQ P76543210 5 7,6,5,4,3,2,1
G2D_SEQ P67452301 : 6,7,4,5,2,3,0
G2D_SEQ P10325476 : 1,0,3,2,5,4,7
G2D SEQ P01234567 0,1,2,3,4,5,6
// for 2bpp rgb
G2D_SEQ 2BPP BIG BIG
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
G2D_SEQ 2BPP_BIG LITTER
12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3
G2D_SEQ 2BPP LITTER BIG
3,2,1,0,7,6,5,4,11410,9,8,15,14,13,12
G2D SEQ 2BPP_LITTER LITTER
0,1,2,3,4, 5 6 7,8,9,10,11,12,13,14,15
// for 1lbpp rgb
G2D SEQ 1BPP BIG BIG
31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
G2D SEQ 1BPP BIG_LITTER
24,25,26,27,28,29,30,31,16417,18,19,20,21,22,23,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7
G2D_SEQ 1BPP _LITTER BIG
7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8,23,22,21,20,19,18,17,16,31, 30,29, 28,27,26,25,24
G2D_SEQ 1BPP _LITTER LITTER
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
4.5 g2d blt flags h
¢ DESCRIPTION
g2d blt flags h EX ZrtHRIER
¢ PROTOTYPE
WRiFE © HELERRRHDBIRATE, RE—IF 13
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typedef enum {
G2D_BLT _NONE 0 = 0x0,
G2D BLT BLACKNESS,
G2D BLT NOTMERGEPEN,
G2D_BLT_MASKNOTPEN,
G2D BLT NOTCOPYPEN,
G2D BLT MASKPENNOT,
G2D BLT NOT,
G2D_BLT XORPEN,
G2D_BLT_NOTMASKPEN,
G2D_BLT_MASKPEN,
G2D BLT NOTXORPEN,
G2D BLT NOP,
G2D_BLT MERGENOTPEN,
G2D BLT COPYPEN,
G2D BLT MERGEPENNOT,
G2D BLT MERGEPEN,
G2D BLT WHITENESS = 0x000000ff,

G2D ROT 90 =  0x00000100,
G2D ROT 180 =  0x00000200,
G2D ROT 270 =  0x00000300,
G2D ROTH =  0x00001000,
G20 ROT V. =  0x00002000,
//G2D SM TDLR 1 =  0x10000000,
G20 SM DTLR 1 =  0x10000000,
//G2D SM TDRL 1 =  0x20000000,
//G2D SM DTRL 1 =  0x30000000,

} g2d blt flags h;

¢ MEMBERS

MEMBER DESCRIPTION
G2D_BLT_NONE BANTRIRIE
G2D_BLT_BLACK | BLACKNESS
BOIREER IZEENEE)
G2D_BLT NOTMERGEPEN.dst = ~(dst+Src)
G2D_BLT_MASKNOTPEN “dst ==src&dst
G2D_BLT_NOTCOPYPEN dst =~src
G2D_BLT_MASKPENNOT dst =src&~dst
G2D_BLT_NOT dst =~dst
G2D_BLT XORPEN dst =src”dst
G2D_BLT _NOTMASKPEN dst =~(src&dst)
G2D BLT MASKPEN dst =srcé&dst
G2D_BLT_NOTXORPEN  dst =~(src”dst)
G2D_BLT_NOP dst =dst
G2D BLT MERGENOTPEN dst =~src+dst
G2D_BLT COPEPEN dst =src
G2D_BLT_MERGEPENNOT dst =src+~dst
G2D_BLT_MERGEPEN dst =src+dst
G2D_BLT WHITE  WHITENESS
BiFemRRR, XM Eenae)

(EASYIERGIRNERS|0EXERRIAT BARERXE, (XWRE

(EERE KIS R

HEASYIEREIRT RS 18 XN EIET BARERKE (W FREY

WRAFRE © BseEREROERAE. RE—TNF

14



@LW/MIER
KRER: W

4.6 g2d image(version 1.0)

¢ DESCRIPTION
g2d_image A F#iA image BHEER
¢ PROTOTYPE

typedef struct {

_u32 addr[3];
_u32 W;
_u32 h;

g2d data fmt format;
g2d pixel seq pixel seq;
}92d_image;

¢ MEMBERS

addr[3]: EGwigEMIE, $FUV combined, addr[0,1]B%, planarZtfaddr[0,1, 2153, Hfttaddr[0]

a5
w: ERmIRIEE
h: Ef&mn =
format: ElfgmibufferfBREE, ¥Mg2d_data_fmt

pixel seq: E&mibuffertygREES, 1#Mg2d pixel seq

4.7 g2d/image enh

¢ DESCRIPTION
g2d image 'enh FEH#REFH
¢ PROTOTYPE

B, fFrotit. 54 Clip &8, B2H ATk,

ot

typedef struct {

int bbuff;
~u32 color;
g2d_fmt_enh format;
~u32 laddr([3];
_u32 haddr([3];
_u32 width;
~u32 height;
_u32 align[3];
g2d rect clip rect;
~u32 gamut;
int bpremul;
_u8 alpha;
g2d_alpha mode enh mode;
int fd;

u32 use phy addr;
} 92d _image enh;

IR © HiB2EREROBIRAR. RE—INF
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¢ MEMBERS

MEMBER DESCRIPTION
format: B
laddr Buffer: Eia{f{rithit
haddr Buffer: jEiAS{iitit

width : BI®WE (in pixel)
height ;. BEBE (in pixel)
pitch : Bufferfpitch
clip rect : ROI%Ef

gamut . Bl

bpremul 1 BE AR

alpha : Halphaf&

mode : alphatZxiRE

use_phy_addr: BEEAYEMINIGE. 1RRER, 0OFRRERT

7A%: 8 use_phy_addr /9 1 B9BHR, {RAHIESIKREYF laddr A haddr, HBE1THIFRE. &

A fd AFREREXM A,

4.8 g2d fmt enh

e DESCRIPTION
g2d_fmt_enh AT G2D#ERZHHIRT

e PROTOTYPE

typedef enum{

G2D_FORMAT /ARGB8888,
G2D_FORMAT. ABGR8888,
G2D_FORMAT RGBA8888,
G2D FORMAT BGRA8888,
G2D FORMAT XRGB8888,
G2D_FORMAT' XBGR8888,
G2D_FORMAT RGBX8888,
G2D_FORMAT BGRX8888,
G2D_FORMAT RGB88S,

G2D FORMAT BGR888,

G2D FORMAT RGB565,
G2D_FORMAT BGR565,
G2D_FORMAT ARGB4444,
G2D_FORMAT ABGR4444,
G2D_FORMAT RGBA4444,
G2D FORMAT BGRA4444,
G2D FORMAT ARGB1555,
G2D FORMAT ABGR1555,
G2D_FORMAT RGBA5551,
G2D_FORMAT BGRA5551,
G2D_FORMAT ARGB2101010,
G2D FORMAT ABGR2101010,
G2D_FORMAT RGBA10101602,
G2D FORMAT BGRA10101602,

/* invailed for UI channel */
G2D_FORMAT IYUV422 VOY1UOYO = 0x20,
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G2D_FORMAT_IYUV422_Y1VeYouo,
G2D FORMAT_IYUV422 UOY1VeYO,
G2D_FORMAT_IYUV422 Y1UulYoeve,

G2D_FORMAT YUV422UVC V1U1VeUo,
G2D FORMAT YUV422UVC U1V1UGVO,
G2D _FORMAT YUV422 PLANAR,

G2D_FORMAT YUV420UVC_V1U1VOUO = 0x28,
G2D_FORMAT YUV420UVC_U1V1UGVO,

G2D FORMAT YUV420 PLANAR,

G2D_FORMAT YUV411UVC V1U1VOUO = 0x2c,

G2D_FORMAT_YUV411uvC_ulviueve,
G2D_FORMAT_YUV411l PLANAR,

G2D_FORMAT_Y8 = 0x30,

/* YUV 10bit format */
G2D_FORMAT YVU10 P16 = 0x34,

G2D_FORMAT YVU10 P210 = 0x36,
G2D_FORMAT YVU10 444

G2D_FORMAT _YUV10 444
}g2d_fmt_enh;

0x38,
0x39,

4.9 g2d rop3 cmd flag

e DESCRIPTION
g2d_rop3 cmd flag BFENX =TT MiRERS

¢ PROTOTYPE

typedef enum {
G2D_ROP3 BLACKNESS = 0x00,
G2D ROP3 NOTSRCERASEr=10x11,
G2D ROP3_NOTSRCCOPY = 0x33,
G2D_ROP3_ SRCERASE = 0x44,
G2D ROP3 DSTINVERT = 0x55,
G2D ROP3_PATINVERT = Ox5A,
G2D_ROP3 SRCINVERT = 0x66,
G2D_ROP3_SRCAND = 0x88,
G2D ROP3 MERGEPAINT = 0xBB,
G2D _ROP3_ MERGECOPY = 0xCO,
G2D_ROP3_SRCCOPY = OxCC,
G2D_ROP3_SRCPAINT = OxEE,
G2D_ROP3_PATCOPY = OxFO,
G2D ROP3_PATPAINT = OxFB,
G2D_ROP3 WHITENESS = OxFF,

}g2d rop3 cmd flag;

¢ MEMBERS

IR © HiB2EREROBIRAR. RE—INF

17



@LW/MIER

MHER: WE

MEMBER DESCRIPTION
G2D_ROP3_BLACKNESS  dst = BLACK
G2D_ROP3_NOTSRCCOPY dst = (NOT src)

G2D_ROP3_DSTINVERT dst (NOT dst)
G2D_ROP3_PATINVERT dst = pattern XOR dst

g &

G2D_ROP3_SRCINVERT dst = src XOR dst
aaH

G2D_ROP3_SRCAND dst = srcAND dst

G2D_ROP3_MERGEPAINT  dst
B5BEmERKEEEEH

G2D ROP3_SRCCOPY dst = src

G2D ROP3 SRCPAINT dst = src OR dst
a5

G2D_ROP3_PATCOPY dst = pattern

G2D_ROP3_PATPAINT dst = DPSnoo

dst = WHITE

G2D_ROP3 WHITENESS

G2D_ROP3_NOTSRCERASE ~ dst = (NOT src) AND (NOT dst)

CREFAER BN B RN , 3 DLE B4R AR X%
G2D_ROP3_SRCERASE dst = src AND (NOT dst )

DB ERARERRE (XOR) B AR T BRAER2
DB EATRREAIRE (XOR) RIFRPE IR B ARER KA

DB A SRERIEREN BIFER X gEmEeEEH
(NOT src) OR dst pEPURY

G2D_ROP3_MERGECOPY dst = (src AND pattern)

BeESRERINGEeEH , AREAORIREN SR ENERS B ERKIENNEESH.

R /RELAVER (OR )R 1ERTIE R M BYIRAEZ BBV ER

CRERAET X E 1 D1 B BARAE A I
DB EARREME (OR) B ERPEIRAN BARAERZ XK IEER

DESEAM/REAIE (OR) R FRI R KIRE R /5 R

4.10 g2d bld cmd flag

¢ DESCRIPTION
g2d bld cmd flag@EX BLD #&{F<

e PROTOTYPE

typedef enum {
G2D_BLD_ CLEAR 0x00000001,
G2D_BLD COPY = 0x00000002,
G2D BLD DST 0x00000003,
G2D BLD SRCOVER = 0x00000004,
G2D BLD DSTOVER. = 0x00000005,
G2D _BLD SRCIN 0x00000006,
G2D_BLD DSTIN 0x00000007,
G2D_BLD SRCOUT 0x00000008,
G2D BLD DSTOUT 0x00000009,
G2D_BLD_SRCATOP 0x0000000a,
G2D _BLD DSTATOP 0x0000000b,
G2D_BLD_XOR = 0x0000000c,
G2D_CK SRC = 0x00010000,
G2D_CK DST = 0x00020000,

}g2d bld cmd flag;

4.11 g2d ck

e DESCRIPTION

g2d ck EXT colorkey &IEHISHK

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 18
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¢ PROTOTYPE

typedef struct {
int match_rule;
__u32 max_color;
~u32 min_color;
}g2d_ck;

¢ MEMBERS

MEMBER DESCRIPTION

match rule match_rule’fRBY, Color Min=<Color<=Color Max#&T i EILAIE M
Ymatch_ruleAEEY, Color>Color Max or Color <Color MinF R4

ck max_color Color Max

ck min _color Color Min

4.12 g2d alpha mode enh

¢ DESCRIPTION
g2d alpha mode enh T Xi#{T alpha blend 1%{EBY, 1%E#FEHY alpha mode

e PROTOTYPE

typedef enum{
G2D PIXEL ALPHA,
G2D GLOBAL_ ALPHA,
G2D_MIXER ALPHA,
}g2d_alpha mode enh;

¢ MEMBERS

MEMBER DESCRIPTION
G2D_PIXEL ALPHA salpha

G2D GLOBAL ALPHA  Malpha
G2D MIXER ALPHA iE&alpha

4.13 g2d color gmt

e DESCRIPTION
g2d _color gmt EX#HITAIRIER, EFMENERTIE]
¢ PROTOTYPE

IR © HiB2EREROBIRAR. RE—INF
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typedef enum{
G2D BT601,
G2D BT709,
G2D_BT2020,

}g2d color gmt;

4.14 g2d scan order(version 1.0)

e DESCRIPTION

g2d_scan_order EXi#1T alpha blend 21Ef, ERMEGFTER

¢ PROTOTYPE
enum g2d scan_order {
G2D_SM TDLR = 0x00000000,
G2D SM TDRL = 0x00000001,
G2D SM DTLR = 0x00000002,
G2D SM DTRL = 0x00000003,
i
¢ MEMBERS

MEMBER DESCRIPTION

G2D_SM TDLR Top to down, Left to, right
G2D SM DTLR Down to top, Left to right
G2D SM TDRL Top to down, Right<to left
G2D SM DTRL Down to top, Left to right

4.15 g2d blt(version 1.0)

¢ DESCRIPTION

g2d_blt BF—REFM BT blt MER

¢ PROTOTYPE

typedef struct {
g2d blt flags flag;
g2d_image src_image;
g2d_rect src_rect;
g2d_image dst image;
_s32 dst x;
832 dst y;
_u32 color;
_u32 alpha;

}g2d blt;
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o MEMBERS
flag : block transferii&, i¥lg2d blt flags
src_image : FE&EE, ¥Kg2d image
dst_image : BirEEER, #g2d_image
dst_x 1 BAREREZ L fax
dst_ y : BiriERE LAy
color : colorkeyEnes
alpha : @alphafdE

4.16 g2d fillrect(version 1.0)

e DESCRIPTION

g2d fillrect FAFH#EIR—

A fill rectangle BE8

¢ PROTOTYPE
typedef struct {
g2d fillrect flags flag;
g2d_image dst _image;
g2d rect dst rect;
_u32 color;
~u32 alpha;
}g2d fillrect;
¢ MEMBERS
flag : HEFREWATE, #Wlg2d fillrect flags
dst_image :|BEiTERESR, i¥g2d_image
dst rect : BIEWAER, x/y/w/h-EEfBx/ELfy/%/E
color : BAREE
alpha : Ealphald

4.17 g2d stretchblt(version 1.0)

e DESCRIPTION g2d stretchblt AF##R— stretchblt B#ER

e PROTOTYPE

typedef struct {
g2d_blt_ flags
g2d_image
g2d rect
g2d_image
g2d_rect
_u32

flag;
src_image;
src_rect;
dst _image;
dst rect;
color;
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~u32 alpha;
} 92d stretchblt;

J

¢ MEMBERS
flag : block transferiid, i#lg2d blt flags
src_image : JRE&ES, ¥Kig2d_image
src_rect  BERER, x/y/wh-EEfx/ELfay/%/E
dst_image : BFEKRESR, #¥Mg2d_image
dst_rect 1 BARERER, x/y/w/h-ELfax/ELARy/R/E
color : colorkeyHits
alpha : HEalphaf&

4.18 g2d blt h

e DESCRIPTION
g2d blt h SE¥XY foreground H4EHEY ROP2 b8,

e PROTOTYPE

typedef struct {
g2d_blt flags_h flag_h;
g2d_image_enh srcaimage h;
g2d_image enh dst image h;
~u32 color;
_u32 alpha;

}g2d blt h;

¢ MEMBERS

flag h : bLtiRfEflaghis, 1BRBRITE

src_image h : BEGEER,EERNVERSE,1¥Mg2d _image_enh

dst_image_h : BFEKRER, BRENEGSH

color : colorkeyEifa

alpha : Halphaf&

4.19 g2d bld(version 1.0)

¢ DESCRIPTION
g2d bld LIFIEEIRY BLD # colorkey #1E.

e PROTOTYPE

IR © HiB2EREROBIRAR. RE—INF
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typedef struct {
g2d bld cmd flag
g2d_image_enh
g2d_image_enh
g2d ck

bld cmd;
dst_image h;
src_image h;
ck para;

}g2d bld;/* blending enhance */

¢ MEMBERS

bld_cmd : blendingMViR{Eflaghns, HEIRARITS
src_image_h : RERES , EERNEGSH
dst_image_h : BfEKER, LBRHNEGSHK

ck para : colorkey&#

WRAFRE © BseEREROERAE. RE—TNF
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G2D ¥z OS s Hfth driver hal 2FBMEOM TR, RREAETEBE L ioctl LI, AN
sunxi_g2d_control, EEREENBZIZONAE.

& 5-1: API i%ER

API fEFEI B

g2d probe a1 g2d IEzEh
sunxi_g2d_control g2d IRzf ioctl #0
sunxi_g2d close xi# g2d IRz
sunxi_g2d open TF g2d IRz

5.1 1.0 hrA#0

5.1.1 G2D CMD BITBLT

¢ PROTOTYPE

[int sunxi_g2d control(int cmd, void *arg) ]

¢ ARGUMENTS

cmd G2D_CMD BITBLT
arg arg}ug2d blt&iafkigst
o RETURNS

BIn: 0, KK: KW=

e DESCRIPTION
BITBLT RSN ERMEBIEE, tlFEZENRIBR, FRIRRRANBF; BMERM al-
pha blending/colorkey /5# 1% B1x

e DEMO
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g2d rect src_rect;
g2d_blt blit;
~s32 dst_x, dst y;

image front.addr[0]
image front.w

image front.h

image front.format
image front.pixel seq

scn.addr[0]
scn.w

scn.h

scn. format
scn.pixel seq
src_rect.x
src_rect.y
src_rect.w
src_rect.h

dst_x
dst y

blit.color = 0xee8899;
blit.alpha = 0x73;

/* &EIRimgaefliRrec s/
blit.src_image.addr[0]
blit.src_image.w
blit.src_image.h
blit.src_image.format
blit.src_image.pixel seq
blit.src_rect.x
blit.src_rect.y
blit.src_rect.w
blit.src_rect.h

blit.dst image.addr[0]
blit.dst image.w
blit.dst_image.h
blit.dst image.format
blit.dst image.pixel seq
blit.dst x

blit.dst y

/* BWIN/Hitimage buffer */
g2d _image image front,scn;

mem_in;

800;

480;

G2D FMT ARGB8888;
G2D SEQ NORMAL;

mem_out;

800;

480;

G2D_FMT RGBA8888;
G2D_SEQ NORMAL;
0;

0;

480;

272;

0;
0;

/* REBITBLT flaginds: fismalphaflikFEL */
blit.flag = G2D BLT PIXEL ALPHA| G2D BLT FLIP HORIZONTAL;

image, front.addr[0];
image front.w;

image front.hs

imagé front.format;
image front.pixel seq;
Src rect.x;
src_rect.y;
src_rect.w;
src_rect.h;

/* 1% & Birimgaefl HIneCtIE

scn.addr[0];
scn.w;

scn.h;

scn. format;
scn.pixel seq;

= dst_x;

dst vy;

if(sunxi_g2d_control(G2D_CMD BITBLT, &blit)<0)

{

printf("G2D CMD BITBLT failed!\n");
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5.1.2 G2D CMD FILLRECT

e PROTOTYPE

(int sunxi_g2d control(int cmd, void *arg) )
¢ ARGUMENTS
cmd G2D CMD_FILLRECT
arg argg2d_fillrect£5iikigst
¢ RETURNS
FXIh: 0, KW: XK=
¢ DESCRIPTION
RA—HaeNEREELRER IR, FNBESLIAZEEMB4MH alphablending
¢ DEMO
/* HitHimage buffer */
g2d_image scn;
g2d rect dst rect;
g2d fillrect fillrect;
/* & BFILLRECTARSANMEa L phaght/
fillrect.flag =G2D_FIL PLANE ALPHA;
fillrect.color = OxFF345678;
fillrect.alpha = 0x40;
/* REBRimagedll Birrect */
fillrect.dst_image.addr[0] = scn.addr[0];
fillrect.dst image.w = sSCn.w;
fillrect.dst image.h = scn.h;
fillrect.dst image.format =_s¢n.format;
fillrect.dst image.pixel seq= scn.pixel seq;
fillrect.dst_rect.x = dst_rect.x;
fillrect.dst rect.y = dst_rect.y;
fillrect.dst rect.w = dst _rect.w;
fillrect.dst rect.h = dst_rect.h;
if(sunxi g2d control(G2D CMD FILLRECT, &fillrect)<0)
{
printf("G2D CMD FILLRECT failed!\n");
}
¢ PROTOTYPE
WRiFE © HELERRRHDBIRATE, RE—IF 26
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(int sunxi g2d control(int cmd, void *arg) )

¢ ARGUMENTS

cmd G2D_CMD_STRETCHBLT
arg argfg2d_stretchblt&Etikigst
¢ RETURNS

pXIh: 0, KW: KKS

e DESCRIPTION
STRETCHBLT H#ILMNERTEENEZE, IEEREIEFA/NGIENEIBIR, REHN
B BRI BB, REREIBirK/ e BHRMH alpha blending/colorkey #£ M E|H

R
e DEMO

1] /* %HilBimage buffer */

2| 9g2d_image image front,scn;

3| 92d _rect src_rect,dst rect;

41 g2d_stretchblt str;

5

6 | image front.addr[0] =dmem 1in;

7 | image front.w = 800;

8| image front.h = 480;

9 | image front.format = G2D_FMT PYUV420UVC;
10 | image_front.pixel seq = G2D SEQ NORMAL;

11 ] image front.addr[1] = mem_in+ image front.w*image front.h;
12

13 ] scn.addr[0] = mem_out;

14 ] scn.w = 800;

15 scn.h = 480;

16| scn.format = G2D_FMT_ARGB8888;
17 ] scn.pixel seq = G2D_SEQ<NORMAL ;
18| src_rect.x = 0;
19| src_rect.y =0;
20| src_rect.w = 480;
21| src_rect.h = 272;
22| dst_rect.x = 17;
23| dst_rect.y = 100;
24 | dst_rect.w = 480;
25| dst_rect.h = 272;
26
27 | /* RESTRETCHBLTHRE : fimalphaflieik90E */
28| str.flag = G2D BLT PIXEL ALPHA|G2D BLT ROTATE90;
29| str.color = 0xee8899;
30| str.alpha = 0x73;
31
32| /* kEIRimagefiRrect */
33| str.src_image.addr[0] = image front.addr([0];
34| str.src_image.addr[1] = image_ front.addr[1];
35| str.src_image.w = image front.w;
36 | str.src_image.h = image front.h;
37| str.src_image.format = image front.format;
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str.src_image.pixel seq = image front.pixel seq;
str.src_rect.x src_rect.x;

str.src_rect.y = src_rect.y;
str.src_rect.w = src_rect.w;
str.src_rect.h = src_rect.h;

/* &EBBtrimagef1BRrrect */

str.dst image.addr[0] scn.addr([0];
str.dst image.w scn.w;
str.dst image.h = scn.h;

str.dst image.format = scn.format;
str.dst image.pixel seq = scn.pixel seq;
str.dst rect.x = dst rect.x;
str.dst rect.y = dst_rect.y;
str.dst_rect.w = dst_rect.w;
str.dst rect.h = dst_rect.h;

if(sunxi g2d control(G2D CMD STRETCHBLT, &str) < 0)

{
printf("G2D_CMD_STRETCHBLT failed!\n");

}

5.1.4 G2D CMD PALETTE TBL

¢ PROTOTYPE

[int sunxi g2d control(int cmd, void #*arg)

¢ ARGUMENTS

cmd G2D_CMD_PALETTE_TBL
arg arg/g2d palettegiig{kigst
¢ RETURNS

BIh: 0, KW:. KKS
e DESCRIPTION

PALETTE_TAL REHLIHIBIBEHRRTE NEMH SDRAM, thIBEERIEEOBVIREIE for-

mat 1€ E A palette IEXNAZELFERAXZHS
e DEMO

unsigned long length;

/* BIEREEE *+/

unsigned long palette[0x100];
g2d palette pal;

pal->pbuffer = &palette;

IR © HiB2EREROBIRAR. RE—INF

28



10
11
12

OO Ul W N =

e e e
© 0 O Ul WN = O O

@LWIMIER

XAEER:

pal.

if(s
{

}

size = length;
unxi g2d control(G2D _CMD PALETTE TBL, &pal)<0)

printf("G2D_CMD_PALETTE TBL failed!\n");

5.2 2.0 hikzsiz0

5.2.1 G2D CMD BITBLT H

e PROTOTYPE
[int sunxi g2d control(int cmd, void *arg) )
¢ ARGUMENTS

cmd G2D_CMD_BITBLT_H

arg arg’ng2d blt h&EHAdsst
¢ RETURNS

MTh: 0, kM: KKS
e DESCRIPTION

LI REEMLERR. B EERE, LIYT foreground HEEMAI ROP2 &3,

¢ DEMO

/* TEEEThEE */

blit.flag h = G2D _ROT 90;

blit.src_image h.addr[0] = saddr[0];

blit.src_image h.format = G2D_FORMAT ARGB8888;

blit.src _image h.mode = G2D GLOBAL ALPHA;

blit.src_image h.clip rect.x = 0;

blit.src _image h.clip rect.y = 0;

blit.src_image h.clip rect.w = 1920;

blit.src_image h.clip rect.h = 1080;

blit.src_image h.width = 1920;

blit.src_image h.height = 1080;

blit.src_image h.alpha = 0Oxff;

blit.dst image h.addr[0] = daddr[0O];

blit.dst image h.format = G2D FORMAT ARGB8888;

blit.dst image h.mode = G2D GLOBAL_ ALPHA;

blit.dst image h.clip rect.x = 0;

blit.dst image h.clip rect.y = 0;

blit.dst image h.clip rect.w = 1920;

blit.dst image h.clip rect.h = 1080;
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blit.dst image h.alpha = Oxff;
blit.dst image h.width = 1920;
blit.dst image h.height = 1080;

if(sunxi g2d control(G2D CMD BITBLT H , (unsigned long) (&b1lit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
_LINE_, FILE , FUNCTION );
return -1;

}

/* ZEIRThEE */

blit.flag h = G2D BLT NONE 0;

blit.src_image h.addr[0] = saddr[0];
blit.src _image h.format = G2D FORMAT ARGB8888;
blit.src_image h.mode = G2D GLOBAL_ ALPHA;
blit.src_image h.clip rect.x
blit.src_image h.clip rect.y
blit.src_image h.clip rect.w = 1280;
blit.src_image h.clip_rect.h = 800;
blit.src_image_h.width = 1280;
blit.src_image h.height = 800;
blit.src_image h.alpha = 0xff;
blit.dst image h.addr[0] = daddr[0];
blit.dst image h.format = G2D_FORMAT ARGB8888;
blit.dst_image _h.mode = G2D_GLOBAL_ALPHA;
blit.dst image h.clip rect.x = 0;
blit.dst image h.clip rect.y = 0;
blit.dst image h.clip rect.w =.1920;
blit.dst image h.clip rect.h = 1080;
blit.dst image h.alpha = 0Oxff;

blit.dst_image h.width = 1920;

blit.dst_image hheight = 1080;

nn
o)

if(sunxi g2d control(G2D CMD BITBLT H",(unsigned long) (&b1lit)) < 0)
{
printf (" [%d][%s][%s]1G2D_ €MD BITBLT H failure!\n",
_ LINE_, FILE , FUNCTION );
return -1;

}

/* BT */

blit.flag h = G2D_BLT NONE 0;

blit.src_image h.addr[0] = saddr[0];
blit.src image h.format = G2D FORMAT ARGB8888;
blit.src_image h.mode = G2D GLOBAL_ ALPHA;
blit.src _image h.clip rect.x = 0;
blit.src_image h.clip_rect.y = 0;
blit.src_image h.clip rect.w = 1280;
blit.src _image h.clip rect.h = 800;
blit.src_image h.width = 1280;

blit.src_image h.height = 800;

blit.src_image h.alpha = 0Oxff;
blit.dst_image h.addr[0] = daddr[0O];
blit.dst image h.format = G2D_FORMAT YUV420UVC V1U1VeUO;
blit.dst image h.mode = G2D GLOBAL ALPHA;
blit.dst image h.clip rect.x = 0;

blit.dst image h.clip rect.y = 0;
blit.dst image h.clip rect.w = 1280;
blit.dst_image_h.clip_rect.h = 800;
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blit.dst image h.alpha = Oxff;
blit.dst image h.width = 1280;
blit.dst image h.height = 800;

if(sunxi g2d control(G2D CMD BITBLT H , (unsigned long) (&b1lit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
_LINE_, FILE , FUNCTION );
return -1;

}

5.2.2 G2D CMD BLD H

e PROTOTYPE

[int sunxi_g2d_control(int cmd, void *arg) ]

¢ ARGUMENTS
cmd G2D_CMD_BLD_H
arg arg}ug2d bld&ia{kigst

e RETURNS
pXIN: 0, KW KKS

¢ DESCRIPTION

LI ATEER) BLD(porter-duff) 11

¢ DEMO
blend.bld cmd = G2D _BLD COPY;
blend.src_image h.mode = G2D_GLOBAL ALPHA;
blend.src image h.format = G2D FORMAT ARGB8888;
blend.src_image h.alpha = 128;
blend.src image h.clip rect.x = 0;
blend.src_image h.clip rect.y = 0;
blend.src image h.clip rect.w = 1280;
blend.src _image h.clip rect.h = 800;
blend.src _image h.width = 1280;
blend.src _image h.height = 800;
blend.dst image h.mode = G2D GLOBAL ALPHA;
blend.dst image h.format = G2D FORMAT ARGB8888;
blend.dst image h.alpha = 128;
blend.dst image h.clip rect.x = 0;
blend.dst image h.clip rect.y = 0;
blend.dst image h.clip rect.w = 1280;
blend.dst image h.clip rect.h = 800;
blend.dst image h.width = 1280;
blend.dst image h.height = 800;
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if(sunxi_g2d control(G2D CMD BLD H ,(unsigned long) (&blend)) < 0)

{

printf("[%d][%s][%s]G2D CMD BLD H failure!\n",
_LINE_, _ FILE_, FUNCTION_ );
return -1;

5.2.3 G2D CMD MASK H

¢ PROTOTYPE

[int sunxi g2d control(int cmd, void *arg)

¢ ARGUMENTS

cmd G2D_CMD_MASK_H
arg arg’g2d_maskblt&EHg{ktsst

e RETURNS

BIn: 0, K. KK=
¢ DESCRIPTION
IRIEHE IS BN MR (ERST sre. pattern 1 dst #H1Ti21E, HIFLERFREFS dst .

¢ DEMO

mask.back flag
mask.fore flag
mask.src_image

h

G2D_ROP3_NOTSRCCOPY;
G2D_ROP3_SRCINVERT;
.Clip rect.x = 0;

mask.src _image h.clipurect.y.=0;
mask.src_image h.clip rect.w = 1280;
mask.src_image h.clip rect.h = 800;
mask.src_image h.width = 1280;
mask.src_image h.height = 800;
mask.src_image h.mode = G2D GLOBAL ALPHA;
mask.dst image h.clip rect.x = 0;
mask.dst image h.clip rect.y
mask.dst_image h.clip_rect.w
mask.dst image h.clip rect.h
mask.dst image h.width = 1280;
mask.dst image h.height = 800;
mask.dst image h.mode = G2D GLOBAL ALPHA;
mask.mask _image h.clip rect.x = 0;
mask.mask_image h.clip rect.y
mask.mask image h.clip rect.w
mask.mask image h.clip rect.h
mask.mask image h.width = 1280;
mask.mask image h.height = 800;
mask.mask image h.mode = G2D GLOBAL ALPHA;

0;
1280;
800;

I mnn
@~ o
DO N ~-
©
-~ ©
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mask.ptn _image h.clip rect.x
mask.ptn image h.clip rect.y
mask.ptn _image h.clip rect.w = 1280;
mask.ptn _image h.clip rect.h = 800;
mask.ptn_image h.width = 1280;
mask.ptn image h.height = 800;

mask.ptn_image h.mode = G2D GLOBAL ALPHA;
mask.src_image h.alpha = Oxff;

mask.mask_image h.alpha = Oxff;
mask.ptn _image h.alpha = Oxff;
mask.dst image h.alpha = Oxff;

mask.src_image h.format = G2D FORMAT ARGB8888;
mask.mask image h.format = G2D FORMAT ARGB8888;
mask.ptn _image h.format = G2D FORMAT ARGB8888;
mask.dst image h.format = G2D FORMAT ARGB8888;

1}
(o]

if(sunxi g2d control(G2D CMD MASK H , (unsigned long) (&mask)) < 0)

{
printf("[%d][%s][%s]G2D CMD MASK H failure!\n", LINE , FILE , FUNCTION );
return -1;

}

5.3 #HEAERZ

struct mixer para {
g2d operation flag op flag;
g2d blt flags h flag h;
g2d_rop3 _cmd /flag back/flag;
g2d_rop3 cmd flag fore flag;
g2d bld cmd flag bld cmd;
g2d_image_lenh src_image h;
g2d image enh dst image h;
g2d image enh ptn image h;
g2d_image .enh mask image h;
g2d ck ck _para;

}i

typedef enum {
OP_FILLRECT = 0x1,
OP BITBLT = 0x2,
OP BLEND = 0x4,
0P_MASK = 0x8,
OP_SPLIT MEM = 0x10,
} 92d operation flag;

struct mixer para @ RCQ #tABRIIZOEAE, ATUBRRTE—1TKA, HEMRER

#HZERHE@MAER, struct mixer para BZBIREHEOLHEN—NEE, W& 2 F

.
AN
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& 5-1: mixerpara

FRUAMMRE] LUR#t A2 O el EEE TR ORI, RBIRREFN RIS g2d_operation_flag

BPAT. ea
5.3.1 G2D _CMD MIXER TASK ‘N

e PROTOTYPE

(int sunxi_g2d_

¢ ARGUME

cmd:

arg[o]: BENXMHIRAFargismmixer paraigst, #OERIEMRIEAIEH

arg[1]: EHTERENMNKE, KTETFL

e RETURN

(mw: 0, KM KKS )

RAREMNER, mEERY mixer para ¥, FiFFHNEALRE, FELENEEGSAE
MAREERE, FREFNEGEREAFEERGE.

THEEHAIES K 16 MR, HF 4 BiE rgb B4R, 6 MZ Y8 RIB4EM, 6 ME nvl2
P8
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%%

z22

=

#define RGB_IMAGE NAME "../../pic/c1080 good.rgb"

#define Y8 _IMAGE_NAME “../../pic/en dmabuf bike 1280x720 220 Y8.bin"
#define NV12_IMAGE NAME "../../pic/bike 1280x720 220.bin"

#define FRAME TO BE PROCESS 16

/*4 rgb convert 6 Y8 convert 6 yuv420 convert*

unsigned int out width[FRAME TO BE PROCESS] = {
192, 154, 108, 321, 447, 960, 241, 320,
1920, 1439, 1280, 1920, 2048, 720, 800, 480}

unsigned int out height[FRAME TO BE PROCESS] = {

struct test info t
{

struct mixer para info[FRAME_TO BE PROCE

Int main()

{

test info.info[0@].flag h = G2D BLT NONE H;
test info.info[0].op flag = OP BITBLT;
test info.info[0].src_image h.format = G
test info.info[0@].src_image h.width = 19
test info.info[0@].src_image h.height =1
test info.info[0].srewimage h.clip rect.
test_info.info[@].src_image h.clip_rect:
test info.info[0].src _image h.cldp rect.
test infoiinfo[0].src imagegh.clip rect.
test info.info[0]:src image h.color =
test info.info[0].src image h.mode = G2D
test_info.info[0].src’ image h.alpha =
test /info.info[@].src_image h.align[0] =
test info.info[@].src image h.align[1l] =
test info.info[0].src_image hjalign[2]

test _info.info[0].dst imagé h.format = G
test_info.info[0].dst_image h.width = 80
test info.info[@].dst image h.
test info.info[0].dst image h.
test info.info[0].dst image h.
test info.info[0].dst image h.
test info.info[0@].dst image h.clip rect.
test info.info[0].dst image h.color =
test info.info[0].dst image h.mode = G2D
test info.info[0].dst image h.alpha = 25
test info.info[0].dst image h.align[0] =
test _info.info[0].dst _image h.align[1]
test info.info[0].dst image h.align[2]
for (i = 0; i < FRAME_TO BE PROCESS; ++i) {
memcpy (&test _info.info[i], &test

clip rect.
clip rect.
clip_rect.

/

108, 87, 70, 217, 213, 640,
840, 240, 1080, 777, 800, 1080,
2048, 480, 480, 240};

SS1;

2D FORMAT RGB888;
20;

080;

-

y = 05

w = 1920;

h = 1080;

Oxee8899;

 PIXEL ALPHA;

Oxaa;

i n n
o O O

2D_FORMAT RGB88S8;
0;

height = 480;

X = 0;
y =0;
w 1920;
h = 1080;

0xee8899;

 PIXEL ALPHA;
5;

0;

0;

0;

_info.info[0],

sizeof(struct mixer para));

test info.info[i].dst image h.width = out width[i];

test_info.info[i].dst_image h.height =
test info.info[i].dst image h.clip rect.w =
test info.info[i].dst image h.clip rect.h =
if (1 < 4) {

out height[il];
out_width[i];
out height[i];
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test info.out size[i] = test info.info[i].dst image h.width *
test info.info[i].dst image h.height * 3;

test info.info[i].src_image h.format = G2D FORMAT BGR888;

test _info.info[i].src_image h.width = 1920;

test info.info[i].src_image h.height = 1080;

test info.info[i]l.src _image h.clip rect.w = 1920;

test info.info[i].src_image h.clip rect.h = 1080;

test info.in size[i] = 1920*1080*3;

snprintf(test info.src_image name[i], 100, "%s",RGB_IMAGE NAME);

} else if (i < 10) {

test info.out size[i] = test info.info[i].dst image h.width *
test info.info[i].dst image h.height;

test info.info[i]l.src image h.format = G2D FORMAT Y8;

test info.info[i].src_image h.width = 1280;

test info.info[i].src_image h.height = 720;

test info.info[i].src_image h.clip rect.w = 1280;

test info.info[i].src_image h.clip rect.h = 720;

test info.in size[i] = 1280*720;

snprintf(test info.src _image name[i], 100, "%s",Y8 IMAGE NAME);

} else {

test_info.out_size[i] = test_info.info[i].dst_image h.width *
test info.info[i].dst image h.height * 2;

test info.info[i].src image h.format =
G2D_FORMAT_YUV420UVC_U1V1UBVO;

test info.info[i].src_image h.width = 128053

test info.info[i].src_image h.height = 720;

test_info.info[i].src_image_h.clip_rect.w =_1280;

test info.info[i].src_image h.clip rect.h = 720;

test_info.in size[i] = 1280%720%2;

snprintf(test info.srchimage name[i], 100, "%s",NV12 IMAGE NAME);

}

ret = ion memory request(&test info.dst ion[i], 1, NULL, test info.
out size[i]);

test info.info[i].dst image h.fd = test info.dst ion[i].fd data.fd;//rtos-
hal VIR REFHHERTd, RESESOY IR, HigBIF RS

test info.info[i].dst image h.format = test info.info[i].src_image h.
format;
ret = ion_memory_ request(&test_info.src_ion[i], 0, test_info.
src_image name[i], test info.infsize[i]);
test info.info[id.src_image h.fd = test info.src_ion[i].fd data.fd;//rtos-
ha LR RYIREH A 32 e BT (2 o 0 IR AL, FHIS BRI
}
arg[0] = (unsigned long)test info.info;
arg[1] = FRAME TO BE PROCESS;
if (sunxi_g2d control(G2D CMD MIXER TASK, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD MIXER TASK failure!\n", LINE ,
_ _FILE_,  FUNCTION );
goto FREE SRC;
)
printf("[%d][%s][%s]G2D CMD MIXER TASK SUCCESSFULL'\n", LINE ,

_ FILE_, _ FUNCTION );

printf("save result data to file\n");
char sufix[40] = {0};
for (1 = 0; i < FRAME_TO BE PROCESS; ++i) {
if (i < 4) {
snprintf(sufix, 40, "rgh888");
} else if (i < 10)
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112 snprintf(sufix, 40, "y8");

113 else

114 snprintf(sufix, 40, "nv12");

115

116 snprintf(test info.dst image name[i], 100,

117 "../../result/frame%sd %dx%d to %dx%d.%s",i,

118 test info.info[i].src_image h.width,

119 test info.info[i].src image h.height,

120 test info.info[i].dst image h.width,

121 test info.info[i].dst image h.height, sufix);

122 if((test_info.dst_fp[i] = fopen(test_info.dst image name[i], "wb+")) ==
NULL) {

123 printf("open file %s fail.\n", test info.dst image name[il]);

124 break;

125 } else {

126 ret = fwrite(test info.dst ion[i].virt addr,

127 test info.out size[i], 1, test info.dst fp[il]);

128 fflush(test info.src fp);

129 printf("Frame %d saved\n", 1i);

130 }

131

132 }

133 [y

1341 3

5.3.2 G2D_CMD _CREATE TASK

e PROTOTYPE

(int sunxi_g2d gontrol(int emd; void) *arg) )

¢ ARGUMENTS

cmd G2D_CMD_CREATE_TASK
arg[o] argiEmmixer paratsft, HMAERIEIMEEAE
arg[1] SELEMNEE, KFEFL

¢ RETURN

BRI task id, AFEHFEFL, HERRMNAKK

arg 01X AEHFrismMImixer paraNBSWE .

% ioctl s AT RIRMBUHLLIESLH], EMEMHAIE, RBESTFIRM.
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XS RESMET R MERR rcq AFIRNEURFITRARLEE L dma map 1 dma umap
£, MEREZEREHM mixer para BINARE. task id 2E—H, RERHERMAIELR, =
—H4IEX id, RIEX id ARALUH—F121E, thiligE, HER, FREXZHAT mixer para,

TBF, LB FRMEARM BN LSRR A ELS, RATI/DPARY task id,

taskO A taskl, mixer para fNfAIf9:EE%E G2D CMD MIXER TASK HIfF.

arg[0] = (unsigned long)test info.info;
arg[1l] = FRAME_TO BE PROCESS;
taskd = sunxi g2d control(G2D CMD CREATE TASK, (arg));
if (task® < 1) {

printf("[%d][%s][%s]G2D CMD CREATE TASK failure!\n", _ LINE ,
__FILE__,  FUNCTION );
goto FREE_SRC;
}
printf("[%d][%s][%s]G2D CMD CREATE TASK SUCCESSFULL!\n", LINE ,

_ FILE ,  FUNCTION );

arg[0] = (unsigned long)test info2.info;

arg[1] = FRAME TO BE_PROCESS2;

taskl = sunxi_g2d control(G2D CMD CREATE TASK, (arg));
if (taskl < 1) {

printf("[%d][%s][%s]1G2D CMD CREATE TASK failure!\n", ULINEZ",
~ FILE ,  FUNCTION_ );
goto FREE_SRC;
}
printf("[%d] [%s][%sdG2D_CMD_CREATE_TASK SWCCESSFULL'\m", _ LINE ,

_ FILE_ ,< FUNCTION );

5.3.3 G2D_CMD TASK APPLY

e PROTOTYPE
(int sunxi g2d control(int cmd, void *arg) )
¢ ARGUMENTS
cnd G2D_CMD_TASK_APPLY
arg[0] task id(E3G2D CMD CREATE TASK@<#ig)
arg[1] argigmmixer parafsft, HUGIEAVIETLREEIEH
e RETURN
(m: o, KM KMS )
XFE © HRELERERNBERRE. RE—TINF 38
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% ioctl apLRITER BHITHE O IERIEE(HE1F.

BEEAER arg[l] AH mixer para, #ZiZE G2D CMD CREATE TASK Z[EFiR[EH
mixer para HES@ET B — ioctl %< G2D CMD TASK GET PARA 17,
XERAEBEHEMBWEEZAEMN G2D CMD CREATE TASK BRIETiIFmisk, m
G2D CMD TASK APPLY 2ETF task id HHiTH.

arg[0] = taskO;
arg[1l] = (unsigned long)test info.info;
if(sunxi g2d control(G2D CMD TASK APPLY, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD TASK APPLY failure!\n", LINE ,
_ FILE ,  FUNCTION );
goto FREE_SRC;
)
printf("[%d][%s][%s]G2D CMD TASK APPLY SUCCESSFULL'\n", LINE ,

_ FILE_, _ FUNCTION );

arg[0] = taskl;
arg[1l] = (unsigned long)test info2.info;
if(sunxi g2d control(G2D CMD TASK APPLY, (arg)) < 0) {

printf("[%d][%s][%s]1G2D CMD TASK APPLY failure!\n", _ LINE ,
__FILE__, _ FUNCTION_);
goto FREE_SRC;
}
printf("[%d][%s][%s]1G2D CMD TASK APPLY SUCCESSFULL!\n",\ WLINE .4

_ FILE_, _ FUNCTION );

5.3.4 G2D/MD TASK DESTROY

e PROTOTYPE

(int sunxi g2d control(int cmd, void *arg) )

¢ ARGUMENTS

cmd G2D_CMD_TASK _DESTROY
arg[o] task id
¢ RETURN
(mn: o, KM KMS )

1% ioctl MLHEARERIET task id BIHLAMIESCH,
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arg[0] = taskO;;

__FILE_, _ FUNCTION );
arg[0] = taskl;;

_ FILE_, _ FUNCTION );

if(sunxi g2d control(G2D CMD TASK DESTROY, (arg)) < 0) {

printf("[%d][%s][%s]1G2D CMD TASK DESTROY failure!\n", LINE ,
~ FILE , FUNCTION );
goto FREE_SRC;
}
printf("[%d][%s][%s]1G2D CMD TASK DESTROY SUCCESSFULL!\n", LINE |,

if(sunxi g2d control(G2D CMD TASK DESTROY, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD TASK DESTROY failure!\n", LINE ,
_ FILE ,  FUNCTION );
goto FREE_SRC;
)
printf("[%d][%s][%s]G2D CMD TASK DESTROY SUCCESSFULL!\n", LINE ,

5.3.5 G2D CMD TASK GET PARA

e PROTOTYPE
[int sunxi g2d control(int cmd, void *arg) )
¢ ARGUMENTS

cmd G2D_CMD_TASK DESTROY

arg[o] task id

arg[1] femEmixer parafgft, ZMEETRESERAIEH
e RETURN
(o o, &M &KS )
% ioctl S HERRIREUERE task id BY mixer para,
PR BITRIEE ARIES FRIERBY AT B BEHX 4 SRS
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