< Avuwiner

RTOS G2D
A&

RAS: 1.0
&% HAH: 2021.4.10

@LWIIWER

MHER: WE

hR s [52
hRZs S =L HAZITA AEHR
1.0 | 2020.7.29 AWA1639 1. FINEDAR
1.0 | 2021.4.10 AWA1693 1. RN B RE PR3 BR

WRINFE © HRB2ERRRNERAR. RE—IF

@LWIMIER
g MHHELR:

H =
1 #hA 1
1.1 STHEEITY . . . o 1
1.2 EREEE o e 1
1.3 BAREE e 1
2 RINEEIHENE 2
2.1 ZEMformat L e 2
22 BlEsize 3
2.3 JEfZiEZE (fill color rectgngle) 3
2.4 FEFEEMSEMR (rotate and mirror) 4
2.5 alphablending 4
2.6 colorkey e e e e e e 5
2.7 ZBRY (Stretchblt) 6
2.8 ZICHMHEE (rop2) 6
2.9 =THMHEIE (maskbltrop3) 7
3 EREEENE 8
4 HIELEN 9
4.1 g2d blt flags . . .o LT 9
4.2 g2d fillrect flags L e 9
4.3 g2d data fmt(version 1.0)« L 10
4.4 g2d pixel seqg(version 1.0) . (.00 . . . Lo 12
4.5 g2d blt flags h e 13
4.6 g2d image(version 1.0)" . . . L 15
4.7 g2d image enh/ L e 15
4.8 g2d fmt.enh L4 16
49 g2d rop3.cmd flag 17
4.10 g2d bld ecmdflag™. 18
411 g2d ck e e 18
4.12 g2d alpha mode enh 19
4.13 g2d color gmt e e e 19
4.14 g2d scan order(version 1.0) L L . 20
4.15 g2d blt(version 1.0) e e 20
4.16 g2d fillrect(version 1.0) 21
4.17 g2d stretchblt(version 1.0) 21
4.18 g2d blt h e 22
4.19 g2d bld(version 1.0) e 22
5 HEEO 24
5.1 LORRZASIEDO o e 24
5.1.1 G2D CMD BITBLT e et e e 24
AR © BHSRFRHERHERAT,. RE—IRF ii

@LWIMIER

MHER: WE

5.1.2 G2D CMD FILLRECTot tieeee 26
5.1.3 G2D CMD STRETCHBLT cov o 26
5.1.4 G2D CMD PALETTE TBL o\ o ttee e 28

5.2 20 RRAIED . . o o 29
5.2.1 G2D CMD BITBLT H. . . . o\ oot 29
5.2.2 G2D CMD BLD H . . . otvoe e 31
5.2.3 G2D CMD MASK H . . . o oot 32

5.3 HUMEBIEDDo 33
5.3.1 G2D CMD MIXER TASKo viei .. 34
5.3.2 G2D CMD CREATE TASK.ot ooee e 37
5.3.3 G2D CMD TASK APPLY oot 38
5.3.4 G2D CMD TASK DESTROY . . . « o o vt ot e e 39
5.3.5 G2D CMD TASK GET PARAo .. 40

6 FAQ 11
6.1 BIAEL . . . o 41

6.1.1 WHEE

.................................... 41

WRIRFE © HRB2ERRRNHERAE. RE—TIMF iii

@LWIMIER
g MXHEER: WE

EE

2-1 clipsize IREBE e
2-2 fillrectangle TREE
2-3 rotate and mirror ;JREE L.
2-4 alphablending REE
2-5 alphablending REE
2-6 colorkey TREE.
2-7 scale and alpha blending REE
2-8 mask IREE
5-1 mixXerpara e e e e e e e e e e e e e e e e e e e 34

N O O U U B AW

WRIRFE © HRB2ERRRNHERAE. RE—TIMF iv

@LWIMIER
’ MXHEER: WE

1.1 XHEfET

7148 Sunxi ¥ & RTOS Lt G2D K& hal BI—MRERHERIFHZED, AARSERREHESE,

1.2 &M

\/ Ii
]

® 1-1: AR

= am R R L EATES IR A4
V833 Melis rtes-hal/hal/source/g2d rcq/
F133 Melis rtos-hal/hal/source/g2d_rcq/

1.3 BirEE

G2D WRzhie i AR BYFF & /4650 A 1o

WA © BSEERERHERAE. RE—TF 1

@LWIMIER
g MXHEER: WE

G2D FRapFELMEGIEE/AIERR/EETEER, UNRERFESMINEE (2FF8HE alpha. col-
orkey. rotate. mirror. rop. maskblt) FEFINEINEE,

2.1 &Y format

G2D FORMAT ARGB8888/G2D FORMAT ARGB8888/G2D FORMAT ABGR8888/
G2D FORMAT RGBA8888/G2D FORMAT BGRA8888/G2D FORMAT XRGB88SS,
G2D FORMAT XBGR8888/G2D FORMAT RGBX8888/G2D FORMAT BGRX8888/
G2D FORMAT RGB888/G2D FORMAT BGR888/G2D FORMAT RGB565,

G2D FORMAT BGR565/G2D FORMAT ARGB4444/G2D FORMAT ABGR4444/
G2D FORMAT RGBA4444/G2D FORMAT BGRA4444/G2D FORMAT ARGB1555,
G2D FORMAT ABGR1555/G2D FORMAT RGBA5551/G2D FORMAT BGRA5551/
G2D FORMAT ARGB2101010/G2D FORMAT. ABGR2101010,

G2D FORMAT RGBA1010102/G2D FORMAT BGRA1010102

G2D FORMAT AYUV422 VOY1U0Y0,
G2D FORMAT IYUV422 Y1VOYOUO,
G2D FORMAT IYUV422 UO0Y1V0YO,
G2D_FORMAT IYUV422 Y1UOYOVO),
G2D FORMAT YUV422UVC V1ULVOUO,
G2D FORMAT YUV422UVC_W1V1U0Vo,
G2D FORMAT YUV422 PLANAR,
G2D_FORMAT YUV420UVC V1U1V0UO,
G2D FORMAT YUV420UVC U1V1UOVO,
G2D FORMAT YUV420 PLANAR,

G2D FORMAT YUV411UVC V1U1V0UO,
G2D_FORMAT YUV411UVC U1V1UOVO,
G2D FORMAT YUV411 PLANAR,

G2D FORMAT Y8,

G2D FORMAT YVU10 P010,
G2D FORMAT YVU10 P210,
G2D FORMAT YVU10 444,
G2D FORMAT YUV10 444,

WRAFRE © BseEREROERAE. RE—TNF 2

(Auwiner
ISR WE

2.2 El=E size

EIEH size 1HXHIB8%%E Image size. source rect UMK dest recto,

e Image size 5B R buffer B4, sTLIRRAERNRKRTENKN,

e source rect BIEEF clip KIFHUESRY (G2D Rahz#F clip REMNER, WAL clip
BRAPE—RKIE) ;

e dest rect MIANEF dest Image EETRRRFTHAUESRT., NRZE Stretchblt, source
rect 5 dest rect WEESIIUA—, HMWTEEXNER, XTENZ—H.

MTEMT, CEXEATENERRY, RFBEEXBEUWAIER clip X5, Bl source
rect; AEBEGKXIHA dest image, little dog XIEN A source rect M1 % dest image
XiI%HY dest recto

Dest image

Dest
buffer
height

F urce buffer height

dest rect Dest buffer width

2-1: clip size ~"EE

2.3 %EAZIEZE (fill color rectgngle)

IRFEREAZ X1 ThRE PT LASC IR SR K 1T HIT R B IR, WM TEmMIERT 0xFFO080FF
B9 ARGB {8, ZINEEERAI LUBTIRESIEKIEANEMBERMEL, FISEAILLUETIZTE flag 5k
R—MEZZEEM BTN alpha 158,

WA © BSEERERHERAE. RE—TF 3

@LWIMER
IR WE

2.4 TE¥MEE& (rotate and mirror)

EESEGETES LM T Horizontal. Vertical. Rotate180°. Mirror45°. Rotate90°.
Mirror135°. Rotate270°7 Fig{E,

2-3: rotate and mirror TREE

2.5 alpha blending

AREIVEREZ 88 LU alpha blending, Alpha %39 pixel alpha. plane alpha. multialpha
=

WA © BSEERERHERAE. RE—TF 4

@LWIMIER
’ STAYERLR: W

¢ pixel alpha BEASMEEBEHE—1%JE alpha &,

¢ plane alpha MR—1EEHFFAEGREEE— globe alpha &

e multi alpha MEMEEERN alpha EZEBIHEA globe alpha*pixel alpha, B LUES
G2D FEpiEOM flag EiFHl.

2-4: alpha blending ~"EE

TS

Dhixtizerteon
* Lresiingh on
L

riech

destimenion codior ke

2-5: alpha blending ~EE

2.6 colorkey

RE image ZiEIA LA colorkey MR, MRITo

o KB destination Bk =T source, destination # match #49 (BEAAHEI
), WEFRBEE, BRA source 5 destination ff alpha blending /8 EE,

o HEF source WKL RET destination, M source F match 9 CROBRAESS
53) , WHEEREY, HIZER destination 5 source f# alpha blending FHERE,

WA © BSEERERHERAE. RE—TF 5

@LWIMIER
XHEER: WE

TxE EE
L

msch

destieniom eolior key

2-6: colorkey mEE

2.7 48K (Stretchblt)

Stretchblt ZE 2 source &M destination B size H1THEN, HRARS destination
alpha blending. colorkey FizBHEHIZEZHRGEENEBR, WEOFE 1.0 xR ELFEHET
LIhe 4 —ic i, B2 2.0 lRa&LlfE, FaiflieikAn] LUERTIgE.

StretchBlt

Destination

2-7: scale and alpha blending REE]

2.8 ZoiEMiE{E (rop2)

BINEELSMERXENHEREEN BRGRASFIRNERGER.

WA © BSEERERHERAE. RE—TF 6

(Auwiner
ISR WE

2.9 =oitMi2(E (maskblt rop3)

S FEGERFEAMHRER TERSMHRIHRYER, HINBRENE =GR FE%GER, BffE®R
%B&, BRIGERE (BIREGER). ITEFFR, MELEEIAET25)RZ src ptn mask dst.

Prarradies-

2-8: mask ~=E

WA © BSEERERHERAE. RE—TF 7

@LW/MER
MXHEER: WE

G2D RREFBEENSHIEGLER G2D FEHSEAMu, PifsS, EREESHATRE rtos-
hal/hal/source/g2d rcq/g2d.c RMENIEE, W FFR:

#define SUNXI_GIC START 32
#define SUNXI IRQ G2D (SUNXI GIC START + 21)
#define SUNXI G2D START 0x01480000

BT SRR HER V833 FALUMIAEMT S, M ERERNF MRS, ELZH 5 SOC F
8B MNAEN R F SRR HITE B,

WRAFRE © BseEREROERAE. RE—TNF 8

@LW/MIER

XAEER:

4.1 g2d blt flags

e DESCRIPTION g2d_blt flags AF##R— bitblt 1 stretchblt A9 flag BMER

e PROTOTYPE

typedef enum {
G2D_BLT NONE
G2D BLT PIXEL ALPHA
G2D _BLT_PLANE_ALPHA
G2D BLT MULTI ALPHA
G2D BLT SRC_COLORKEY
G2D _BLT DST COLORKEY

= O0x00000000,
= 0x00000001,
= 0x00000002,
= Ox00000004,
= O0x00000008,
= 0x00000010,

G2D BLT _FLIP_HORIZONTAL = 0x00000020,

G2D BLT FLIP VERTICAL = 0x00000040,
G2D BLT ROTATE90 = 0x00000080,
G2D BLT ROTATE180 = 0x00000100,
G2D BLT ROTATE270 = 0x00000200,
G2D BLT MIRROR45 = 0x00000400,
G2D BLT MIRROR135 = 0x00000800,

}g2d blt flags;

¢ MEMBERS

G2D BLT NONE - diEn

G2D BLT PIXEL ALPHA .- malphatris

G2D BLT PLANE ALPHA - MHalphatf&

G2D BLT MULTI ALPHA - SE&alphatrd

G2D_BLT SRC_COLORKEY - JFcolorkeytr

G2D BLT DST COLORKEY - BtFcolorkeytrd

G2D BLT FLIP HORIZONTAL - KFER%%

G2D BLT FLIP VERTICAL - EEHEE

G2D BLT ROTATEQO - PETETRERE90E

G2D BLT ROTATE180 - EEEER 180E

G2D BLT ROTATE270 - WBIEHERE 270

G2D BLT MIRROR45 - BIR45E

G2D BLT MIRROR135 - BBI35E

4.2 g2d fillrect flags

e DESCRIPTION g2d fillrect flags BF#ER— fillrect B E R

IR © HiB2EREROBIRAR. RE—INF

@LW/MIER

XAEER:

¢ PROTOTYPE

typedef enum {

G2D FIL NONE = 0x00000000,
G2D_FIL PIXEL ALPHA = 0x00000001,
G2D_FIL PLANE ALPHA = 0x00000002,
G2D FIL MULTI ALPHA = 0x00000004,

}g2d fillrect flags;

¢ MEMBERS

G2D_FIL NONE - dE%R

G2D_FIL PIXEL ALPHA - EzZKXIHFMBrf=alpha

G2D_FIL_PLANE_ALPHA - EZKXIHFMBirEalpha

G2D FIL MULTI ALPHA

HExEXEMalphalE*EalphalBEEMBR#alpha

4.3 g2d data fmt(version 1.0)

e DESCRIPTION

g2d data fmt BFHEREERR

e PROTOTYPE

1.0 A2 H5RIEBAS T

typedef enum {
G2D_FMT ARGB_AYUV8888 = (0x0),

G2D FMT BGRA VUYA8888 = = (0x1),
G2D _FMT ABGR AVUY8888 = = (0x2),
G2D_FMT RGBA YUVA8888 = (0x3),
G2D FMT XRGB8888 = (0x4),
G2D FMT BGRX8888 =A0x5),
G2D FMT XBGR8888 = (0x6),
G2D_FMT RGBX8888 = (0x7),
G2D_FMT ARGB4444 = (0x8),
G2D_FMT ABGR4444 = (0x9),
G2D_FMT RGBA4444 = (0xA),
G2D FMT BGRA4444 = (0xB),
G2D_FMT ARGB1555 = (0xC),
G2D_FMT ABGR1555 = (0xD),
G2D_FMT_RGBA5551 = (OXE),
G2D_FMT BGRA5551 = (OxF),
G2D_FMT RGB565 = (0x10),
G2D_FMT BGR565 = (0x11),
G2D_FMT_IYUV422 = (0x12),
G2D_FMT_8BPP_MONO = (0x13),
G2D_FMT_4BPP_MONO = (0x14),
G2D_FMT 2BPP_MONO = (0x15),
G2D FMT 1BPP_MONO = (0x16),
G2D FMT PYUV422UVC = (0x17),
G2D_FMT_PYUV420UVC = (0x18),
G2D_FMT_PYUV411UVC = (0x19),

IR © HiB2EREROBIRAR. RE—INF

10

@LW/MER

XAEER:

RERBEAEER:
G2D_FMT_PYUV422 =
G2D_FMT_PYUV420 =
G2D_FMT PYUV411 =

REWAA TS
G2D_FMT 8BPP_PALETTE =
G2D_FMT 4BPP_PALETTE =
G2D FMT 2BPP PALETTE =
G2D FMT 1BPP PALETTE =
G2D_FMT PYUV422UVC MB16 =
G2D_FMT_PYUV420UVC_MB16 =
G2D_FMT _PYUV411UVC_MB16 =
G2D_FMT PYUV422UVC MB32 =
G2D_FMT PYUV420UVC MB32 =
G2D_FMT PYUV411UVC MB32 =
G2D_FMT PYUV422UVC MB64 =
G2D_FMT_PYUV420UVC_MB64 =
G2D_FMT PYUV411UVC_MB64 =
G2D_FMT_PYUV422UVC_MB128=
G2D_FMT PYUV420UVC MB128=
G2D_FMT PYUV411UVC MB128=

(0x1A),
(0x1B),
(0x1C),

(0x1D),
(Ox1E),
(Ox1F),
(0x20),
(0x21),
(0x22),
(0x23),
(0x24),
(0x25),
(0x26),
(0x27),
(0x28),
(0x29),
(0x2A),
(0x2B),
(0x2C),

}g2d data fmt;

¢ MEMBERS

G2D FMT ARGB8888
G2D_FMT BGRA8888
G2D_FMT ABGR8888
G2D_FMT RGBA8888

G2D FMT XRGB8888
G2D_FMT BGRX8888
G2D_FMT XBGR8888
G2D_FMT RGBX8888

G2D_FMT ARGB4444
G2D FMT BGRA4444
G2D_FMT ABGR4444
G2D_FMT RGBA4444
G2D_FMT ARGB1555
G2D_FMT BGRA1555
G2D FMT ABGR1555
G2D FMT RGBA1555

G2D_FMT_RGB565
G2D_FMT BGR565

G2D_FMT_IYUV422

G2D_FMT_8BPP_MONO
G2D_FMT_4BPP_MONO
G2D_FMT 2BPP_MONO
G2D_FMT 1BPP_MONO

G2D_FMT_PYUV422UVC
G2D_FMT_PYUV420UVC

: alpha(8bit)R(8bit)G(8bit)B(8bit)
: B(8bit)G(8bit)R(8bit)alpha(8bit)
: alpha(8bit)B(8bit)G(8bit)R(8bit)
: R(8bit)G(8bit)B(8bit)alpha(8bit)

: 24bit,RGB&8bit,alphauEiIEsNEF NOXFF
: 24bit,BGR&Z8bit,alpha MR EENEFTHOXFF
: 24bit,BGR&8bit,alphalS{iiBENtEFENOXFF
: 24bit,RGB&8bit,alphalufffi B ENtEFEIOXFF

: alpha(4bit)R(4bit)G(4bit)B(4bit)
: B(4bit)G(4bit)R(4bit)alpha(4bit)
T alpha(4bit)B(4bit)G(4bit)R(4bit)
: R(4bit)G(4bit)B(4bit)alpha(4bit)
: alpha(1lbit)R(5bit)G(5bit)B(5bit)
: B(5bit)G(5bit)R(5bit)alpha(1lbit)
: alpha(1lbit)B(5bit)G(5bit)R(5bit)
: R(5bit)G(5bit)B(5bit)alpha(1lbit)

: R(5bit)G(6bit)B(5bit)
: B(5bit)G(6bit)R(5bit)

: Interleaved YUV422

: 8bit per pixel mono
: 4bit per pixel mono
: 2bit per pixel mono
: 1bit per pixel mono

: Planar UV combined only
: Planar UV combined only

IR © HiB2EREROBIRAR. RE—INF

11

@LW/MIER

XAEER:

G2D FMT PYUV411UVC : Planar UV combined only

G2D_FMT_PYUV422 : Planar YUV422
G2D_FMT_PYUV420 : Planar YUV420
G2D_FMT_PYUV411 : Planar YUV411

G2D _FMT 8BPP_PALETTE: 8bit per pixel palette only for input
G2D FMT 4BPP_PALETTE: 4bit per pixel palette only for input
G2D FMT 2BPP_PALETTE: 2bit per pixel palette only for input
G2D_FMT 1BPP _PALETTE: 1lbit per pixel palette only for input

G2D FMT PYUV422UVC MB16: 16x16 tile base planar uv combined only for input
G2D FMT PYUV420UVC MB16: 16x16 tile base planar uv combined only for input
G2D FMT PYUV411UVC MB16: 16x16 tile base planar uv combined only for input
G2D FMT PYUV422UVC MB32: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV420UVC MB32: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV411UVC MB32: 16x16 tile base planar uv combined only for input
G2D _FMT PYUV422UVC MB64: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV420UVC MB64: 16x16 tile base planar uv combined only for input
G2D_FMT_PYUV411UVC MB64: 16x16 tile base planar uv combined only for input
G2D_FMT_PYUV422UVC_MB128: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV420UVC MB128: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV411UVC MB128: 16x16 tile base planar uv combined only for input

4.4 g2d pixel seq(version 1.0)

e DESCRIPTION g2d pixel seq BTFHiRGREF
e PROTOTYPE

typedef enum {

G2D_SEQ_NORMAL = 0x0,
G2D_SEQ VYUY = 0x1,
G2D SEQ YVYU = 0x2,
G2D SEQ VUWU £ 0x3,
G2D_SEQ P10 = 0x4,
G2D_SEQ_PO1 = 0x5,
G2D_SEQ P3210 = 0x6,
G2D SEQ P0123 = 0x7,
G2D SEQ P76543210 = 0x8,
G2D_SEQ_P67452301 = 0x9,
G2D_SEQ_P10325476 = OXA,
G2D_SEQ_P01234567 = 0xB,
G2D_SEQ 2BPP BIG BIG = 0xC,

G2D SEQ 2BPP BIG LITTER = 0xD,
G2D SEQ 2BPP_LITTER BIG = OXE,
G2D_SEQ 2BPP_LITTER LITTER = OxF,
G2D_SEQ_1BPP_BIG BIG = 0x10,
G2D SEQ 1BPP BIG LITTER = 0x11,
G2D SEQ 1BPP_LITTER BIG = 0x12,
G2D SEQ 1BPP LITTER LITTER = 0x13,

} g2d pixel seq;

¢ MEMBERS

IR © HiB2EREROBIRAR. RE—INF

12

@LW/MER

XIHERR:. W
G2D SEQ_NORMAL : Normal sequence
//for interleaved yuv422
G2D_SEQ VYUY : pixel OTE{E161i
G2D_SEQ_YVYU : pixel 1TE{E161i
// for uv_combined yuv420
G2D_SEQ VUvU : Planar VU combined only
// for 16bpp rgb
G2D SEQ P10 1 pixel OTE{E16fI
G2D SEQ P01 1 pixel 17E{E161i
// planar format or 8bpp rgb
G2D_SEQ P3210 : pixel OTE{HES8{i
G2D_SEQ P0123 1 pixel 3TE{E8{i
// for 4bpp rgb
G2D SEQ P76543210 5 7,6,5,4,3,2,1
G2D_SEQ P67452301 : 6,7,4,5,2,3,0
G2D_SEQ P10325476 : 1,0,3,2,5,4,7
G2D SEQ P01234567 0,1,2,3,4,5,6
// for 2bpp rgb
G2D_SEQ 2BPP BIG BIG
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
G2D_SEQ 2BPP_BIG LITTER
12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3
G2D_SEQ 2BPP LITTER BIG
3,2,1,0,7,6,5,4,11410,9,8,15,14,13,12
G2D SEQ 2BPP_LITTER LITTER
0,1,2,3,4, 5 6 7,8,9,10,11,12,13,14,15
// for 1lbpp rgb
G2D SEQ 1BPP BIG BIG
31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
G2D SEQ 1BPP BIG_LITTER
24,25,26,27,28,29,30,31,16417,18,19,20,21,22,23,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7
G2D_SEQ 1BPP _LITTER BIG
7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8,23,22,21,20,19,18,17,16,31, 30,29, 28,27,26,25,24
G2D_SEQ 1BPP _LITTER LITTER
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
4.5 g2d blt flags h
¢ DESCRIPTION
g2d blt flags h EX ZrtHRIER
¢ PROTOTYPE
WRiFE © HELERRRHDBIRATE, RE—IF 13

@LW/MIER

MHER: WE

typedef enum {
G2D_BLT _NONE 0 = 0x0,
G2D BLT BLACKNESS,
G2D BLT NOTMERGEPEN,
G2D_BLT_MASKNOTPEN,
G2D BLT NOTCOPYPEN,
G2D BLT MASKPENNOT,
G2D BLT NOT,
G2D_BLT XORPEN,
G2D_BLT_NOTMASKPEN,
G2D_BLT_MASKPEN,
G2D BLT NOTXORPEN,
G2D BLT NOP,
G2D_BLT MERGENOTPEN,
G2D BLT COPYPEN,
G2D BLT MERGEPENNOT,
G2D BLT MERGEPEN,
G2D BLT WHITENESS = 0x000000ff,

G2D ROT 90 = 0x00000100,
G2D ROT 180 = 0x00000200,
G2D ROT 270 = 0x00000300,
G2D ROTH = 0x00001000,
G20 ROT V. = 0x00002000,
//G2D SM TDLR 1 = 0x10000000,
G20 SM DTLR 1 = 0x10000000,
//G2D SM TDRL 1 = 0x20000000,
//G2D SM DTRL 1 = 0x30000000,

} g2d blt flags h;

¢ MEMBERS

MEMBER DESCRIPTION
G2D_BLT_NONE BANTRIRIE
G2D_BLT_BLACK | BLACKNESS
BOIREER IZEENEE)
G2D_BLT NOTMERGEPEN.dst = ~(dst+Src)
G2D_BLT_MASKNOTPEN “dst ==src&dst
G2D_BLT_NOTCOPYPEN dst =~src
G2D_BLT_MASKPENNOT dst =src&~dst
G2D_BLT_NOT dst =~dst
G2D_BLT XORPEN dst =src”dst
G2D_BLT _NOTMASKPEN dst =~(src&dst)
G2D BLT MASKPEN dst =srcé&dst
G2D_BLT_NOTXORPEN dst =~(src”dst)
G2D_BLT_NOP dst =dst
G2D BLT MERGENOTPEN dst =~src+dst
G2D_BLT COPEPEN dst =src
G2D_BLT_MERGEPENNOT dst =src+~dst
G2D_BLT_MERGEPEN dst =src+dst
G2D_BLT WHITE WHITENESS
BiFemRRR, XM Eenae)

(EASYIERGIRNERS|0EXERRIAT BARERXE, (XWRE

(EERE KIS R

HEASYIEREIRT RS 18 XN EIET BARERKE (W FREY

WRAFRE © BseEREROERAE. RE—TNF

14

@LW/MIER
KRER: W

4.6 g2d image(version 1.0)

¢ DESCRIPTION
g2d_image A F#iA image BHEER
¢ PROTOTYPE

typedef struct {

_u32 addr[3];
_u32 W;
_u32 h;

g2d data fmt format;
g2d pixel seq pixel seq;
}92d_image;

¢ MEMBERS

addr[3]: EGwigEMIE, $FUV combined, addr[0,1]B%, planarZtfaddr[0,1, 2153, Hfttaddr[0]

a5
w: ERmIRIEE
h: Ef&mn =
format: ElfgmibufferfBREE, ¥Mg2d_data_fmt

pixel seq: E&mibuffertygREES, 1#Mg2d pixel seq

4.7 g2d/image enh

¢ DESCRIPTION
g2d image 'enh FEH#REFH
¢ PROTOTYPE

B, fFrotit. 54 Clip &8, B2H ATk,

ot

typedef struct {

int bbuff;
~u32 color;
g2d_fmt_enh format;
~u32 laddr([3];
_u32 haddr([3];
_u32 width;
~u32 height;
_u32 align[3];
g2d rect clip rect;
~u32 gamut;
int bpremul;
_u8 alpha;
g2d_alpha mode enh mode;
int fd;

u32 use phy addr;
} 92d _image enh;

IR © HiB2EREROBIRAR. RE—INF

15

@LW/MER

XAEER:

¢ MEMBERS

MEMBER DESCRIPTION
format: B
laddr Buffer: Eia{f{rithit
haddr Buffer: jEiAS{iitit

width : BI®WE (in pixel)
height ;. BEBE (in pixel)
pitch : Bufferfpitch
clip rect : ROI%Ef

gamut . Bl

bpremul 1 BE AR

alpha : Halphaf&

mode : alphatZxiRE

use_phy_addr: BEEAYEMINIGE. 1RRER, 0OFRRERT

7A%: 8 use_phy_addr /9 1 B9BHR, {RAHIESIKREYF laddr A haddr, HBE1THIFRE. &

A fd AFREREXM A,

4.8 g2d fmt enh

e DESCRIPTION
g2d_fmt_enh AT G2D#ERZHHIRT

e PROTOTYPE

typedef enum{

G2D_FORMAT /ARGB8888,
G2D_FORMAT. ABGR8888,
G2D_FORMAT RGBA8888,
G2D FORMAT BGRA8888,
G2D FORMAT XRGB8888,
G2D_FORMAT' XBGR8888,
G2D_FORMAT RGBX8888,
G2D_FORMAT BGRX8888,
G2D_FORMAT RGB88S,

G2D FORMAT BGR888,

G2D FORMAT RGB565,
G2D_FORMAT BGR565,
G2D_FORMAT ARGB4444,
G2D_FORMAT ABGR4444,
G2D_FORMAT RGBA4444,
G2D FORMAT BGRA4444,
G2D FORMAT ARGB1555,
G2D FORMAT ABGR1555,
G2D_FORMAT RGBA5551,
G2D_FORMAT BGRA5551,
G2D_FORMAT ARGB2101010,
G2D FORMAT ABGR2101010,
G2D_FORMAT RGBA10101602,
G2D FORMAT BGRA10101602,

/* invailed for UI channel */
G2D_FORMAT IYUV422 VOY1UOYO = 0x20,

IR © HiB2EREROBIRAR. RE—INF

16

@LW/MER

XAEER:

G2D_FORMAT_IYUV422_Y1VeYouo,
G2D FORMAT_IYUV422 UOY1VeYO,
G2D_FORMAT_IYUV422 Y1UulYoeve,

G2D_FORMAT YUV422UVC V1U1VeUo,
G2D FORMAT YUV422UVC U1V1UGVO,
G2D _FORMAT YUV422 PLANAR,

G2D_FORMAT YUV420UVC_V1U1VOUO = 0x28,
G2D_FORMAT YUV420UVC_U1V1UGVO,

G2D FORMAT YUV420 PLANAR,

G2D_FORMAT YUV411UVC V1U1VOUO = 0x2c,

G2D_FORMAT_YUV411uvC_ulviueve,
G2D_FORMAT_YUV411l PLANAR,

G2D_FORMAT_Y8 = 0x30,

/* YUV 10bit format */
G2D_FORMAT YVU10 P16 = 0x34,

G2D_FORMAT YVU10 P210 = 0x36,
G2D_FORMAT YVU10 444

G2D_FORMAT _YUV10 444
}g2d_fmt_enh;

0x38,
0x39,

4.9 g2d rop3 cmd flag

e DESCRIPTION
g2d_rop3 cmd flag BFENX =TT MiRERS

¢ PROTOTYPE

typedef enum {
G2D_ROP3 BLACKNESS = 0x00,
G2D ROP3 NOTSRCERASEr=10x11,
G2D ROP3_NOTSRCCOPY = 0x33,
G2D_ROP3_ SRCERASE = 0x44,
G2D ROP3 DSTINVERT = 0x55,
G2D ROP3_PATINVERT = Ox5A,
G2D_ROP3 SRCINVERT = 0x66,
G2D_ROP3_SRCAND = 0x88,
G2D ROP3 MERGEPAINT = 0xBB,
G2D _ROP3_ MERGECOPY = 0xCO,
G2D_ROP3_SRCCOPY = OxCC,
G2D_ROP3_SRCPAINT = OxEE,
G2D_ROP3_PATCOPY = OxFO,
G2D ROP3_PATPAINT = OxFB,
G2D_ROP3 WHITENESS = OxFF,

}g2d rop3 cmd flag;

¢ MEMBERS

IR © HiB2EREROBIRAR. RE—INF

17

@LW/MIER

MHER: WE

MEMBER DESCRIPTION
G2D_ROP3_BLACKNESS dst = BLACK
G2D_ROP3_NOTSRCCOPY dst = (NOT src)

G2D_ROP3_DSTINVERT dst (NOT dst)
G2D_ROP3_PATINVERT dst = pattern XOR dst

g &

G2D_ROP3_SRCINVERT dst = src XOR dst
aaH

G2D_ROP3_SRCAND dst = srcAND dst

G2D_ROP3_MERGEPAINT dst
B5BEmERKEEEEH

G2D ROP3_SRCCOPY dst = src

G2D ROP3 SRCPAINT dst = src OR dst
a5

G2D_ROP3_PATCOPY dst = pattern

G2D_ROP3_PATPAINT dst = DPSnoo

dst = WHITE

G2D_ROP3 WHITENESS

G2D_ROP3_NOTSRCERASE ~ dst = (NOT src) AND (NOT dst)

CREFAER BN B RN , 3 DLE B4R AR X%
G2D_ROP3_SRCERASE dst = src AND (NOT dst)

DB ERARERRE (XOR) B AR T BRAER2
DB EATRREAIRE (XOR) RIFRPE IR B ARER KA

DB A SRERIEREN BIFER X gEmEeEEH
(NOT src) OR dst pEPURY

G2D_ROP3_MERGECOPY dst = (src AND pattern)

BeESRERINGEeEH , AREAORIREN SR ENERS B ERKIENNEESH.

R /RELAVER (OR)R 1ERTIE R M BYIRAEZ BBV ER

CRERAET X E 1 D1 B BARAE A I
DB EARREME (OR) B ERPEIRAN BARAERZ XK IEER

DESEAM/REAIE (OR) R FRI R KIRE R /5 R

4.10 g2d bld cmd flag

¢ DESCRIPTION
g2d bld cmd flag@EX BLD #&{F<

e PROTOTYPE

typedef enum {
G2D_BLD_ CLEAR 0x00000001,
G2D_BLD COPY = 0x00000002,
G2D BLD DST 0x00000003,
G2D BLD SRCOVER = 0x00000004,
G2D BLD DSTOVER. = 0x00000005,
G2D _BLD SRCIN 0x00000006,
G2D_BLD DSTIN 0x00000007,
G2D_BLD SRCOUT 0x00000008,
G2D BLD DSTOUT 0x00000009,
G2D_BLD_SRCATOP 0x0000000a,
G2D _BLD DSTATOP 0x0000000b,
G2D_BLD_XOR = 0x0000000c,
G2D_CK SRC = 0x00010000,
G2D_CK DST = 0x00020000,

}g2d bld cmd flag;

4.11 g2d ck

e DESCRIPTION

g2d ck EXT colorkey &IEHISHK

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 18

@LW/MER

XAEER:

¢ PROTOTYPE

typedef struct {
int match_rule;
__u32 max_color;
~u32 min_color;
}g2d_ck;

¢ MEMBERS

MEMBER DESCRIPTION

match rule match_rule’fRBY, Color Min=<Color<=Color Max#&T i EILAIE M
Ymatch_ruleAEEY, Color>Color Max or Color <Color MinF R4

ck max_color Color Max

ck min _color Color Min

4.12 g2d alpha mode enh

¢ DESCRIPTION
g2d alpha mode enh T Xi#{T alpha blend 1%{EBY, 1%E#FEHY alpha mode

e PROTOTYPE

typedef enum{
G2D PIXEL ALPHA,
G2D GLOBAL_ ALPHA,
G2D_MIXER ALPHA,
}g2d_alpha mode enh;

¢ MEMBERS

MEMBER DESCRIPTION
G2D_PIXEL ALPHA salpha

G2D GLOBAL ALPHA Malpha
G2D MIXER ALPHA iE&alpha

4.13 g2d color gmt

e DESCRIPTION
g2d _color gmt EX#HITAIRIER, EFMENERTIE]
¢ PROTOTYPE

IR © HiB2EREROBIRAR. RE—INF

19

@LW/MIER

XAEER:

typedef enum{
G2D BT601,
G2D BT709,
G2D_BT2020,

}g2d color gmt;

4.14 g2d scan order(version 1.0)

e DESCRIPTION

g2d_scan_order EXi#1T alpha blend 21Ef, ERMEGFTER

¢ PROTOTYPE
enum g2d scan_order {
G2D_SM TDLR = 0x00000000,
G2D SM TDRL = 0x00000001,
G2D SM DTLR = 0x00000002,
G2D SM DTRL = 0x00000003,
i
¢ MEMBERS

MEMBER DESCRIPTION

G2D_SM TDLR Top to down, Left to, right
G2D SM DTLR Down to top, Left to right
G2D SM TDRL Top to down, Right<to left
G2D SM DTRL Down to top, Left to right

4.15 g2d blt(version 1.0)

¢ DESCRIPTION

g2d_blt BF—REFM BT blt MER

¢ PROTOTYPE

typedef struct {
g2d blt flags flag;
g2d_image src_image;
g2d_rect src_rect;
g2d_image dst image;
_s32 dst x;
832 dst y;
_u32 color;
_u32 alpha;

}g2d blt;

IR © HiB2EREROBIRAR. RE—INF

20

@LW/MIER

XAEER:

o MEMBERS
flag : block transferii&, i¥lg2d blt flags
src_image : FE&EE, ¥Kg2d image
dst_image : BirEEER, #g2d_image
dst_x 1 BAREREZ L fax
dst_ y : BiriERE LAy
color : colorkeyEnes
alpha : @alphafdE

4.16 g2d fillrect(version 1.0)

e DESCRIPTION

g2d fillrect FAFH#EIR—

A fill rectangle BE8

¢ PROTOTYPE
typedef struct {
g2d fillrect flags flag;
g2d_image dst _image;
g2d rect dst rect;
_u32 color;
~u32 alpha;
}g2d fillrect;
¢ MEMBERS
flag : HEFREWATE, #Wlg2d fillrect flags
dst_image :|BEiTERESR, i¥g2d_image
dst rect : BIEWAER, x/y/w/h-EEfBx/ELfy/%/E
color : BAREE
alpha : Ealphald

4.17 g2d stretchblt(version 1.0)

e DESCRIPTION g2d stretchblt AF##R— stretchblt B#ER

e PROTOTYPE

typedef struct {
g2d_blt_ flags
g2d_image
g2d rect
g2d_image
g2d_rect
_u32

flag;
src_image;
src_rect;
dst _image;
dst rect;
color;

IR © HiB2EREROBIRAR. RE—INF

21

@LW/MER

XAEER:

~u32 alpha;
} 92d stretchblt;

J

¢ MEMBERS
flag : block transferiid, i#lg2d blt flags
src_image : JRE&ES, ¥Kig2d_image
src_rect BERER, x/y/wh-EEfx/ELfay/%/E
dst_image : BFEKRESR, #¥Mg2d_image
dst_rect 1 BARERER, x/y/w/h-ELfax/ELARy/R/E
color : colorkeyHits
alpha : HEalphaf&

4.18 g2d blt h

e DESCRIPTION
g2d blt h SE¥XY foreground H4EHEY ROP2 b8,

e PROTOTYPE

typedef struct {
g2d_blt flags_h flag_h;
g2d_image_enh srcaimage h;
g2d_image enh dst image h;
~u32 color;
_u32 alpha;

}g2d blt h;

¢ MEMBERS

flag h : bLtiRfEflaghis, 1BRBRITE

src_image h : BEGEER,EERNVERSE,1¥Mg2d _image_enh

dst_image_h : BFEKRER, BRENEGSH

color : colorkeyEifa

alpha : Halphaf&

4.19 g2d bld(version 1.0)

¢ DESCRIPTION
g2d bld LIFIEEIRY BLD # colorkey #1E.

e PROTOTYPE

IR © HiB2EREROBIRAR. RE—INF

22

@LW/MIER

MHER: WE

typedef struct {
g2d bld cmd flag
g2d_image_enh
g2d_image_enh
g2d ck

bld cmd;
dst_image h;
src_image h;
ck para;

}g2d bld;/* blending enhance */

¢ MEMBERS

bld_cmd : blendingMViR{Eflaghns, HEIRARITS
src_image_h : RERES , EERNEGSH
dst_image_h : BfEKER, LBRHNEGSHK

ck para : colorkey&#

WRAFRE © BseEREROERAE. RE—TNF

23

@LWIMIER
: KRER: W

G2D ¥z OS s Hfth driver hal 2FBMEOM TR, RREAETEBE L ioctl LI, AN
sunxi_g2d_control, EEREENBZIZONAE.

& 5-1: API i%ER

API fEFEI B

g2d probe a1 g2d IEzEh
sunxi_g2d_control g2d IRzf ioctl #0
sunxi_g2d close xi# g2d IRz
sunxi_g2d open TF g2d IRz

5.1 1.0 hrA#0

5.1.1 G2D CMD BITBLT

¢ PROTOTYPE

[int sunxi_g2d control(int cmd, void *arg)]

¢ ARGUMENTS

cmd G2D_CMD BITBLT
arg arg}ug2d blt&iafkigst
o RETURNS

BIn: 0, KK: KW=

e DESCRIPTION
BITBLT RSN ERMEBIEE, tlFEZENRIBR, FRIRRRANBF; BMERM al-
pha blending/colorkey /5# 1% B1x

e DEMO

IR © HiB2EREROBIRAR. RE—INF 24

OO Ul WN -

U OO OO R R R R R R WWWWWWWWWWNNNNNNNNDNDNR R R P2 R R
B WNPFP, OO U R WNRFE, OO UE WNRFP, O OO UIdEd WNRFP, OO Uu s WwNDeRR O

@LWIIWER

MHER: WE

g2d rect src_rect;
g2d_blt blit;
~s32 dst_x, dst y;

image front.addr[0]
image front.w

image front.h

image front.format
image front.pixel seq

scn.addr[0]
scn.w

scn.h

scn. format
scn.pixel seq
src_rect.x
src_rect.y
src_rect.w
src_rect.h

dst_x
dst y

blit.color = 0xee8899;
blit.alpha = 0x73;

/* &EIRimgaefliRrec s/
blit.src_image.addr[0]
blit.src_image.w
blit.src_image.h
blit.src_image.format
blit.src_image.pixel seq
blit.src_rect.x
blit.src_rect.y
blit.src_rect.w
blit.src_rect.h

blit.dst image.addr[0]
blit.dst image.w
blit.dst_image.h
blit.dst image.format
blit.dst image.pixel seq
blit.dst x

blit.dst y

/* BWIN/Hitimage buffer */
g2d _image image front,scn;

mem_in;

800;

480;

G2D FMT ARGB8888;
G2D SEQ NORMAL;

mem_out;

800;

480;

G2D_FMT RGBA8888;
G2D_SEQ NORMAL;
0;

0;

480;

272;

0;
0;

/* REBITBLT flaginds: fismalphaflikFEL */
blit.flag = G2D BLT PIXEL ALPHA| G2D BLT FLIP HORIZONTAL;

image, front.addr[0];
image front.w;

image front.hs

imagé front.format;
image front.pixel seq;
Src rect.x;
src_rect.y;
src_rect.w;
src_rect.h;

/* 1% & Birimgaefl HIneCtIE

scn.addr[0];
scn.w;

scn.h;

scn. format;
scn.pixel seq;

= dst_x;

dst vy;

if(sunxi_g2d_control(G2D_CMD BITBLT, &blit)<0)

{

printf("G2D CMD BITBLT failed!\n");

WRINFE © HRB2ERRRNERAR. RE—IF

25

OO U WN -

e e e e
N O Uk W R OO

18
19
20
21
22
23
24
25

Auwiner

XAEER:

5.1.2 G2D CMD FILLRECT

e PROTOTYPE

(int sunxi_g2d control(int cmd, void *arg))
¢ ARGUMENTS
cmd G2D CMD_FILLRECT
arg argg2d_fillrect£5iikigst
¢ RETURNS
FXIh: 0, KW: XK=
¢ DESCRIPTION
RA—HaeNEREELRER IR, FNBESLIAZEEMB4MH alphablending
¢ DEMO
/* HitHimage buffer */
g2d_image scn;
g2d rect dst rect;
g2d fillrect fillrect;
/* & BFILLRECTARSANMEa L phaght/
fillrect.flag =G2D_FIL PLANE ALPHA;
fillrect.color = OxFF345678;
fillrect.alpha = 0x40;
/* REBRimagedll Birrect */
fillrect.dst_image.addr[0] = scn.addr[0];
fillrect.dst image.w = sSCn.w;
fillrect.dst image.h = scn.h;
fillrect.dst image.format =_s¢n.format;
fillrect.dst image.pixel seq= scn.pixel seq;
fillrect.dst_rect.x = dst_rect.x;
fillrect.dst rect.y = dst_rect.y;
fillrect.dst rect.w = dst _rect.w;
fillrect.dst rect.h = dst_rect.h;
if(sunxi g2d control(G2D CMD FILLRECT, &fillrect)<0)
{
printf("G2D CMD FILLRECT failed!\n");
}
¢ PROTOTYPE
WRiFE © HELERRRHDBIRATE, RE—IF 26

@LWIMIER
i KRER: W

(int sunxi g2d control(int cmd, void *arg))

¢ ARGUMENTS

cmd G2D_CMD_STRETCHBLT
arg argfg2d_stretchblt&Etikigst
¢ RETURNS

pXIh: 0, KW: KKS

e DESCRIPTION
STRETCHBLT H#ILMNERTEENEZE, IEEREIEFA/NGIENEIBIR, REHN
B BRI BB, REREIBirK/ e BHRMH alpha blending/colorkey #£ M E|H

R
e DEMO

1] /* %HilBimage buffer */

2| 9g2d_image image front,scn;

3| 92d _rect src_rect,dst rect;

41 g2d_stretchblt str;

5

6 | image front.addr[0] =dmem 1in;

7 | image front.w = 800;

8| image front.h = 480;

9 | image front.format = G2D_FMT PYUV420UVC;
10 | image_front.pixel seq = G2D SEQ NORMAL;

11] image front.addr[1] = mem_in+ image front.w*image front.h;
12

13] scn.addr[0] = mem_out;

14] scn.w = 800;

15 scn.h = 480;

16| scn.format = G2D_FMT_ARGB8888;
17] scn.pixel seq = G2D_SEQ<NORMAL ;
18| src_rect.x = 0;
19| src_rect.y =0;
20| src_rect.w = 480;
21| src_rect.h = 272;
22| dst_rect.x = 17;
23| dst_rect.y = 100;
24 | dst_rect.w = 480;
25| dst_rect.h = 272;
26
27 | /* RESTRETCHBLTHRE : fimalphaflieik90E */
28| str.flag = G2D BLT PIXEL ALPHA|G2D BLT ROTATE90;
29| str.color = 0xee8899;
30| str.alpha = 0x73;
31
32| /* kEIRimagefiRrect */
33| str.src_image.addr[0] = image front.addr([0];
34| str.src_image.addr[1] = image_ front.addr[1];
35| str.src_image.w = image front.w;
36 | str.src_image.h = image front.h;
37| str.src_image.format = image front.format;

IR © HiB2EREROBIRAR. RE—INF 27

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

55

YU WN -

Auwiner

XAEER:

str.src_image.pixel seq = image front.pixel seq;
str.src_rect.x src_rect.x;

str.src_rect.y = src_rect.y;
str.src_rect.w = src_rect.w;
str.src_rect.h = src_rect.h;

/* &EBBtrimagef1BRrrect */

str.dst image.addr[0] scn.addr([0];
str.dst image.w scn.w;
str.dst image.h = scn.h;

str.dst image.format = scn.format;
str.dst image.pixel seq = scn.pixel seq;
str.dst rect.x = dst rect.x;
str.dst rect.y = dst_rect.y;
str.dst_rect.w = dst_rect.w;
str.dst rect.h = dst_rect.h;

if(sunxi g2d control(G2D CMD STRETCHBLT, &str) < 0)

{
printf("G2D_CMD_STRETCHBLT failed!\n");

}

5.1.4 G2D CMD PALETTE TBL

¢ PROTOTYPE

[int sunxi g2d control(int cmd, void #*arg)

¢ ARGUMENTS

cmd G2D_CMD_PALETTE_TBL
arg arg/g2d palettegiig{kigst
¢ RETURNS

BIh: 0, KW:. KKS
e DESCRIPTION

PALETTE_TAL REHLIHIBIBEHRRTE NEMH SDRAM, thIBEERIEEOBVIREIE for-

mat 1€ E A palette IEXNAZELFERAXZHS
e DEMO

unsigned long length;

/* BIEREEE *+/

unsigned long palette[0x100];
g2d palette pal;

pal->pbuffer = &palette;

IR © HiB2EREROBIRAR. RE—INF

28

10
11
12

OO Ul W N =

e e e
© 0 O Ul WN = O O

@LWIMIER

XAEER:

pal.

if(s
{

}

size = length;
unxi g2d control(G2D _CMD PALETTE TBL, &pal)<0)

printf("G2D_CMD_PALETTE TBL failed!\n");

5.2 2.0 hikzsiz0

5.2.1 G2D CMD BITBLT H

e PROTOTYPE
[int sunxi g2d control(int cmd, void *arg))
¢ ARGUMENTS

cmd G2D_CMD_BITBLT_H

arg arg’ng2d blt h&EHAdsst
¢ RETURNS

MTh: 0, kM: KKS
e DESCRIPTION

LI REEMLERR. B EERE, LIYT foreground HEEMAI ROP2 &3,

¢ DEMO

/* TEEEThEE */

blit.flag h = G2D _ROT 90;

blit.src_image h.addr[0] = saddr[0];

blit.src_image h.format = G2D_FORMAT ARGB8888;

blit.src _image h.mode = G2D GLOBAL ALPHA;

blit.src_image h.clip rect.x = 0;

blit.src _image h.clip rect.y = 0;

blit.src_image h.clip rect.w = 1920;

blit.src_image h.clip rect.h = 1080;

blit.src_image h.width = 1920;

blit.src_image h.height = 1080;

blit.src_image h.alpha = 0Oxff;

blit.dst image h.addr[0] = daddr[0O];

blit.dst image h.format = G2D FORMAT ARGB8888;

blit.dst image h.mode = G2D GLOBAL_ ALPHA;

blit.dst image h.clip rect.x = 0;

blit.dst image h.clip rect.y = 0;

blit.dst image h.clip rect.w = 1920;

blit.dst image h.clip rect.h = 1080;

IR © HiB2EREROBIRAR. RE—INF 29

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

@LWIMIER

XAEER:

blit.dst image h.alpha = Oxff;
blit.dst image h.width = 1920;
blit.dst image h.height = 1080;

if(sunxi g2d control(G2D CMD BITBLT H , (unsigned long) (&b1lit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
LINE, FILE , FUNCTION);
return -1;

}

/* ZEIRThEE */

blit.flag h = G2D BLT NONE 0;

blit.src_image h.addr[0] = saddr[0];
blit.src _image h.format = G2D FORMAT ARGB8888;
blit.src_image h.mode = G2D GLOBAL_ ALPHA;
blit.src_image h.clip rect.x
blit.src_image h.clip rect.y
blit.src_image h.clip rect.w = 1280;
blit.src_image h.clip_rect.h = 800;
blit.src_image_h.width = 1280;
blit.src_image h.height = 800;
blit.src_image h.alpha = 0xff;
blit.dst image h.addr[0] = daddr[0];
blit.dst image h.format = G2D_FORMAT ARGB8888;
blit.dst_image _h.mode = G2D_GLOBAL_ALPHA;
blit.dst image h.clip rect.x = 0;
blit.dst image h.clip rect.y = 0;
blit.dst image h.clip rect.w =.1920;
blit.dst image h.clip rect.h = 1080;
blit.dst image h.alpha = 0Oxff;

blit.dst_image h.width = 1920;

blit.dst_image hheight = 1080;

nn
o)

if(sunxi g2d control(G2D CMD BITBLT H",(unsigned long) (&b1lit)) < 0)
{
printf (" [%d][%s][%s]1G2D_ €MD BITBLT H failure!\n",
_ LINE_, FILE , FUNCTION);
return -1;

}

/* BT */

blit.flag h = G2D_BLT NONE 0;

blit.src_image h.addr[0] = saddr[0];
blit.src image h.format = G2D FORMAT ARGB8888;
blit.src_image h.mode = G2D GLOBAL_ ALPHA;
blit.src _image h.clip rect.x = 0;
blit.src_image h.clip_rect.y = 0;
blit.src_image h.clip rect.w = 1280;
blit.src _image h.clip rect.h = 800;
blit.src_image h.width = 1280;

blit.src_image h.height = 800;

blit.src_image h.alpha = 0Oxff;
blit.dst_image h.addr[0] = daddr[0O];
blit.dst image h.format = G2D_FORMAT YUV420UVC V1U1VeUO;
blit.dst image h.mode = G2D GLOBAL ALPHA;
blit.dst image h.clip rect.x = 0;

blit.dst image h.clip rect.y = 0;
blit.dst image h.clip rect.w = 1280;
blit.dst_image_h.clip_rect.h = 800;

IR © HiB2EREROBIRAR. RE—INF

30

OO Ul W N =

e e e
© 0 O Ul WN = O O

@LWIMIER

XAEER:

blit.dst image h.alpha = Oxff;
blit.dst image h.width = 1280;
blit.dst image h.height = 800;

if(sunxi g2d control(G2D CMD BITBLT H , (unsigned long) (&b1lit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
LINE, FILE , FUNCTION);
return -1;

}

5.2.2 G2D CMD BLD H

e PROTOTYPE

[int sunxi_g2d_control(int cmd, void *arg)]

¢ ARGUMENTS
cmd G2D_CMD_BLD_H
arg arg}ug2d bld&ia{kigst

e RETURNS
pXIN: 0, KW KKS

¢ DESCRIPTION

LI ATEER) BLD(porter-duff) 11

¢ DEMO
blend.bld cmd = G2D _BLD COPY;
blend.src_image h.mode = G2D_GLOBAL ALPHA;
blend.src image h.format = G2D FORMAT ARGB8888;
blend.src_image h.alpha = 128;
blend.src image h.clip rect.x = 0;
blend.src_image h.clip rect.y = 0;
blend.src image h.clip rect.w = 1280;
blend.src _image h.clip rect.h = 800;
blend.src _image h.width = 1280;
blend.src _image h.height = 800;
blend.dst image h.mode = G2D GLOBAL ALPHA;
blend.dst image h.format = G2D FORMAT ARGB8888;
blend.dst image h.alpha = 128;
blend.dst image h.clip rect.x = 0;
blend.dst image h.clip rect.y = 0;
blend.dst image h.clip rect.w = 1280;
blend.dst image h.clip rect.h = 800;
blend.dst image h.width = 1280;
blend.dst image h.height = 800;

IR © HiB2EREROBIRAR. RE—INF 31

20
21
22
23
24
25
26

16
17
18
19
20
21
22
23

@LWIMIER

XAEER:

if(sunxi_g2d control(G2D CMD BLD H ,(unsigned long) (&blend)) < 0)

{

printf("[%d][%s][%s]G2D CMD BLD H failure!\n",
LINE, _ FILE_, FUNCTION_);
return -1;

5.2.3 G2D CMD MASK H

¢ PROTOTYPE

[int sunxi g2d control(int cmd, void *arg)

¢ ARGUMENTS

cmd G2D_CMD_MASK_H
arg arg’g2d_maskblt&EHg{ktsst

e RETURNS

BIn: 0, K. KK=
¢ DESCRIPTION
IRIEHE IS BN MR (ERST sre. pattern 1 dst #H1Ti21E, HIFLERFREFS dst .

¢ DEMO

mask.back flag
mask.fore flag
mask.src_image

h

G2D_ROP3_NOTSRCCOPY;
G2D_ROP3_SRCINVERT;
.Clip rect.x = 0;

mask.src _image h.clipurect.y.=0;
mask.src_image h.clip rect.w = 1280;
mask.src_image h.clip rect.h = 800;
mask.src_image h.width = 1280;
mask.src_image h.height = 800;
mask.src_image h.mode = G2D GLOBAL ALPHA;
mask.dst image h.clip rect.x = 0;
mask.dst image h.clip rect.y
mask.dst_image h.clip_rect.w
mask.dst image h.clip rect.h
mask.dst image h.width = 1280;
mask.dst image h.height = 800;
mask.dst image h.mode = G2D GLOBAL ALPHA;
mask.mask _image h.clip rect.x = 0;
mask.mask_image h.clip rect.y
mask.mask image h.clip rect.w
mask.mask image h.clip rect.h
mask.mask image h.width = 1280;
mask.mask image h.height = 800;
mask.mask image h.mode = G2D GLOBAL ALPHA;

0;
1280;
800;

I mnn
@~ o
DO N ~-
©
-~ ©

IR © HiB2EREROBIRAR. RE—INF

32

— O

w

) W W W W
N

@ LWIWER
g MXHEER: WE

L}
(o]

mask.ptn _image h.clip rect.x
mask.ptn image h.clip rect.y
mask.ptn _image h.clip rect.w = 1280;
mask.ptn _image h.clip rect.h = 800;
mask.ptn_image h.width = 1280;
mask.ptn image h.height = 800;

mask.ptn_image h.mode = G2D GLOBAL ALPHA;
mask.src_image h.alpha = Oxff;

mask.mask_image h.alpha = Oxff;
mask.ptn _image h.alpha = Oxff;
mask.dst image h.alpha = Oxff;

mask.src_image h.format = G2D FORMAT ARGB8888;
mask.mask image h.format = G2D FORMAT ARGB8888;
mask.ptn _image h.format = G2D FORMAT ARGB8888;
mask.dst image h.format = G2D FORMAT ARGB8888;

1}
(o]

if(sunxi g2d control(G2D CMD MASK H , (unsigned long) (&mask)) < 0)

{
printf("[%d][%s][%s]G2D CMD MASK H failure!\n", LINE , FILE , FUNCTION);
return -1;

}

5.3 #HEAERZ

struct mixer para {
g2d operation flag op flag;
g2d blt flags h flag h;
g2d_rop3 _cmd /flag back/flag;
g2d_rop3 cmd flag fore flag;
g2d bld cmd flag bld cmd;
g2d_image_lenh src_image h;
g2d image enh dst image h;
g2d image enh ptn image h;
g2d_image .enh mask image h;
g2d ck ck _para;

}i

typedef enum {
OP_FILLRECT = 0x1,
OP BITBLT = 0x2,
OP BLEND = 0x4,
0P_MASK = 0x8,
OP_SPLIT MEM = 0x10,
} 92d operation flag;

struct mixer para @ RCQ #tABRIIZOEAE, ATUBRRTE—1TKA, HEMRER

#HZERHE@MAER, struct mixer para BZBIREHEOLHEN—NEE, W& 2 F

.
AN

WA © BSEERERHERAE. RE—TF

33

(Auvwinwer s
XAEER: W

& 5-1: mixerpara

FRUAMMRE] LUR#t A2 O el EEE TR ORI, RBIRREFN RIS g2d_operation_flag

BPAT. ea
5.3.1 G2D _CMD MIXER TASK ‘N

e PROTOTYPE

(int sunxi_g2d_

¢ ARGUME

cmd:

arg[o]: BENXMHIRAFargismmixer paraigst, #OERIEMRIEAIEH

arg[1]: EHTERENMNKE, KTETFL

e RETURN

(mw: 0, KM KKS)

RAREMNER, mEERY mixer para ¥, FiFFHNEALRE, FELENEEGSAE
MAREERE, FREFNEGEREAFEERGE.

THEEHAIES K 16 MR, HF 4 BiE rgb B4R, 6 MZ Y8 RIB4EM, 6 ME nvl2
P8

IR © HiB2EREROBIRAR. RE—INF 34

N O U W N

W W INDNDNNDNDNMDNDNDNNNDNRRRPR PR PR PR P 2 2
— O OO N ULdkd WNRFP O OWWOWNNOU s WP O O

w

2
33

@LWIMIER

MR

%%

z22

=

#define RGB_IMAGE NAME "../../pic/c1080 good.rgb"

#define Y8 _IMAGE_NAME “../../pic/en dmabuf bike 1280x720 220 Y8.bin"
#define NV12_IMAGE NAME "../../pic/bike 1280x720 220.bin"

#define FRAME TO BE PROCESS 16

/*4 rgb convert 6 Y8 convert 6 yuv420 convert*

unsigned int out width[FRAME TO BE PROCESS] = {
192, 154, 108, 321, 447, 960, 241, 320,
1920, 1439, 1280, 1920, 2048, 720, 800, 480}

unsigned int out height[FRAME TO BE PROCESS] = {

struct test info t
{

struct mixer para info[FRAME_TO BE PROCE

Int main()

{

test info.info[0@].flag h = G2D BLT NONE H;
test info.info[0].op flag = OP BITBLT;
test info.info[0].src_image h.format = G
test info.info[0@].src_image h.width = 19
test info.info[0@].src_image h.height =1
test info.info[0].srewimage h.clip rect.
test_info.info[@].src_image h.clip_rect:
test info.info[0].src _image h.cldp rect.
test infoiinfo[0].src imagegh.clip rect.
test info.info[0]:src image h.color =
test info.info[0].src image h.mode = G2D
test_info.info[0].src’ image h.alpha =
test /info.info[@].src_image h.align[0] =
test info.info[@].src image h.align[1l] =
test info.info[0].src_image hjalign[2]

test _info.info[0].dst imagé h.format = G
test_info.info[0].dst_image h.width = 80
test info.info[@].dst image h.
test info.info[0].dst image h.
test info.info[0].dst image h.
test info.info[0].dst image h.
test info.info[0@].dst image h.clip rect.
test info.info[0].dst image h.color =
test info.info[0].dst image h.mode = G2D
test info.info[0].dst image h.alpha = 25
test info.info[0].dst image h.align[0] =
test _info.info[0].dst _image h.align[1]
test info.info[0].dst image h.align[2]
for (i = 0; i < FRAME_TO BE PROCESS; ++i) {
memcpy (&test _info.info[i], &test

clip rect.
clip rect.
clip_rect.

/

108, 87, 70, 217, 213, 640,
840, 240, 1080, 777, 800, 1080,
2048, 480, 480, 240};

SS1;

2D FORMAT RGB888;
20;

080;

-

y = 05

w = 1920;

h = 1080;

Oxee8899;

 PIXEL ALPHA;

Oxaa;

i n n
o O O

2D_FORMAT RGB88S8;
0;

height = 480;

X = 0;
y =0;
w 1920;
h = 1080;

0xee8899;

 PIXEL ALPHA;
5;

0;

0;

0;

_info.info[0],

sizeof(struct mixer para));

test info.info[i].dst image h.width = out width[i];

test_info.info[i].dst_image h.height =
test info.info[i].dst image h.clip rect.w =
test info.info[i].dst image h.clip rect.h =
if (1 < 4) {

out height[il];
out_width[i];
out height[i];

IR © HiB2EREROBIRAR. RE—INF

35

61

62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79

80

90
91

92

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

@LWIMIER
: SHER: B

test info.out size[i] = test info.info[i].dst image h.width *
test info.info[i].dst image h.height * 3;

test info.info[i].src_image h.format = G2D FORMAT BGR888;

test _info.info[i].src_image h.width = 1920;

test info.info[i].src_image h.height = 1080;

test info.info[i]l.src _image h.clip rect.w = 1920;

test info.info[i].src_image h.clip rect.h = 1080;

test info.in size[i] = 1920*1080*3;

snprintf(test info.src_image name[i], 100, "%s",RGB_IMAGE NAME);

} else if (i < 10) {

test info.out size[i] = test info.info[i].dst image h.width *
test info.info[i].dst image h.height;

test info.info[i]l.src image h.format = G2D FORMAT Y8;

test info.info[i].src_image h.width = 1280;

test info.info[i].src_image h.height = 720;

test info.info[i].src_image h.clip rect.w = 1280;

test info.info[i].src_image h.clip rect.h = 720;

test info.in size[i] = 1280*720;

snprintf(test info.src _image name[i], 100, "%s",Y8 IMAGE NAME);

} else {

test_info.out_size[i] = test_info.info[i].dst_image h.width *
test info.info[i].dst image h.height * 2;

test info.info[i].src image h.format =
G2D_FORMAT_YUV420UVC_U1V1UBVO;

test info.info[i].src_image h.width = 128053

test info.info[i].src_image h.height = 720;

test_info.info[i].src_image_h.clip_rect.w =_1280;

test info.info[i].src_image h.clip rect.h = 720;

test_info.in size[i] = 1280%720%2;

snprintf(test info.srchimage name[i], 100, "%s",NV12 IMAGE NAME);

}

ret = ion memory request(&test info.dst ion[i], 1, NULL, test info.
out size[i]);

test info.info[i].dst image h.fd = test info.dst ion[i].fd data.fd;//rtos-
hal VIR REFHHERTd, RESESOY IR, HigBIF RS

test info.info[i].dst image h.format = test info.info[i].src_image h.
format;
ret = ion_memory_ request(&test_info.src_ion[i], 0, test_info.
src_image name[i], test info.infsize[i]);
test info.info[id.src_image h.fd = test info.src_ion[i].fd data.fd;//rtos-
ha LR RYIREH A 32 e BT (2 o 0 IR AL, FHIS BRI
}
arg[0] = (unsigned long)test info.info;
arg[1] = FRAME TO BE PROCESS;
if (sunxi_g2d control(G2D CMD MIXER TASK, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD MIXER TASK failure!\n", LINE ,
_ _FILE_, FUNCTION);
goto FREE SRC;
)
printf("[%d][%s][%s]G2D CMD MIXER TASK SUCCESSFULL'\n", LINE ,

_ FILE_, _ FUNCTION);

printf("save result data to file\n");
char sufix[40] = {0};
for (1 = 0; i < FRAME_TO BE PROCESS; ++i) {
if (i < 4) {
snprintf(sufix, 40, "rgh888");
} else if (i < 10)

IR © HiB2EREROBIRAR. RE—INF

36

Auwiner
g X W&

112 snprintf(sufix, 40, "y8");

113 else

114 snprintf(sufix, 40, "nv12");

115

116 snprintf(test info.dst image name[i], 100,

117 "../../result/frame%sd %dx%d to %dx%d.%s",i,

118 test info.info[i].src_image h.width,

119 test info.info[i].src image h.height,

120 test info.info[i].dst image h.width,

121 test info.info[i].dst image h.height, sufix);

122 if((test_info.dst_fp[i] = fopen(test_info.dst image name[i], "wb+")) ==
NULL) {

123 printf("open file %s fail.\n", test info.dst image name[il]);

124 break;

125 } else {

126 ret = fwrite(test info.dst ion[i].virt addr,

127 test info.out size[i], 1, test info.dst fp[il]);

128 fflush(test info.src fp);

129 printf("Frame %d saved\n", 1i);

130 }

131

132 }

133 [y

1341 3

5.3.2 G2D_CMD _CREATE TASK

e PROTOTYPE

(int sunxi_g2d gontrol(int emd; void) *arg))

¢ ARGUMENTS

cmd G2D_CMD_CREATE_TASK
arg[o] argiEmmixer paratsft, HMAERIEIMEEAE
arg[1] SELEMNEE, KFEFL

¢ RETURN

BRI task id, AFEHFEFL, HERRMNAKK

arg 01X AEHFrismMImixer paraNBSWE .

% ioctl s AT RIRMBUHLLIESLH], EMEMHAIE, RBESTFIRM.

WRINFE © HRB2ERRRNERAR. RE—IF 37

@LWIMIER

MHER: WE

XS RESMET R MERR rcq AFIRNEURFITRARLEE L dma map 1 dma umap
£, MEREZEREHM mixer para BINARE. task id 2E—H, RERHERMAIELR, =
—H4IEX id, RIEX id ARALUH—F121E, thiligE, HER, FREXZHAT mixer para,

TBF, LB FRMEARM BN LSRR A ELS, RATI/DPARY task id,

taskO A taskl, mixer para fNfAIf9:EE%E G2D CMD MIXER TASK HIfF.

arg[0] = (unsigned long)test info.info;
arg[1l] = FRAME_TO BE PROCESS;
taskd = sunxi g2d control(G2D CMD CREATE TASK, (arg));
if (task® < 1) {

printf("[%d][%s][%s]G2D CMD CREATE TASK failure!\n", _ LINE ,
__FILE__, FUNCTION);
goto FREE_SRC;
}
printf("[%d][%s][%s]G2D CMD CREATE TASK SUCCESSFULL!\n", LINE ,

_ FILE , FUNCTION);

arg[0] = (unsigned long)test info2.info;

arg[1] = FRAME TO BE_PROCESS2;

taskl = sunxi_g2d control(G2D CMD CREATE TASK, (arg));
if (taskl < 1) {

printf("[%d][%s][%s]1G2D CMD CREATE TASK failure!\n", ULINEZ",
~ FILE , FUNCTION_);
goto FREE_SRC;
}
printf("[%d] [%s][%sdG2D_CMD_CREATE_TASK SWCCESSFULL'\m", _ LINE ,

_ FILE_ ,< FUNCTION);

5.3.3 G2D_CMD TASK APPLY

e PROTOTYPE
(int sunxi g2d control(int cmd, void *arg))
¢ ARGUMENTS
cnd G2D_CMD_TASK_APPLY
arg[0] task id(E3G2D CMD CREATE TASK@<#ig)
arg[1] argigmmixer parafsft, HUGIEAVIETLREEIEH
e RETURN
(m: o, KM KMS)
XFE © HRELERERNBERRE. RE—TINF 38

e e el e
N OOk N, OO

18

—_
©

@LWIMIER
: KRER: W

% ioctl apLRITER BHITHE O IERIEE(HE1F.

BEEAER arg[l] AH mixer para, #ZiZE G2D CMD CREATE TASK Z[EFiR[EH
mixer para HES@ET B — ioctl %< G2D CMD TASK GET PARA 17,
XERAEBEHEMBWEEZAEMN G2D CMD CREATE TASK BRIETiIFmisk, m
G2D CMD TASK APPLY 2ETF task id HHiTH.

arg[0] = taskO;
arg[1l] = (unsigned long)test info.info;
if(sunxi g2d control(G2D CMD TASK APPLY, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD TASK APPLY failure!\n", LINE ,
_ FILE , FUNCTION);
goto FREE_SRC;
)
printf("[%d][%s][%s]G2D CMD TASK APPLY SUCCESSFULL'\n", LINE ,

_ FILE_, _ FUNCTION);

arg[0] = taskl;
arg[1l] = (unsigned long)test info2.info;
if(sunxi g2d control(G2D CMD TASK APPLY, (arg)) < 0) {

printf("[%d][%s][%s]1G2D CMD TASK APPLY failure!\n", _ LINE ,
__FILE__, _ FUNCTION_);
goto FREE_SRC;
}
printf("[%d][%s][%s]1G2D CMD TASK APPLY SUCCESSFULL!\n",\ WLINE .4

_ FILE_, _ FUNCTION);

5.3.4 G2D/MD TASK DESTROY

e PROTOTYPE

(int sunxi g2d control(int cmd, void *arg))

¢ ARGUMENTS

cmd G2D_CMD_TASK _DESTROY
arg[o] task id
¢ RETURN
(mn: o, KM KMS)

1% ioctl MLHEARERIET task id BIHLAMIESCH,

IR © HiB2EREROBIRAR. RE—INF 39

N O U W N -

e
QU WN R O O

Auwiner

MHER: WE

arg[0] = taskO;;

__FILE_, _ FUNCTION);
arg[0] = taskl;;

_ FILE_, _ FUNCTION);

if(sunxi g2d control(G2D CMD TASK DESTROY, (arg)) < 0) {

printf("[%d][%s][%s]1G2D CMD TASK DESTROY failure!\n", LINE ,
~ FILE , FUNCTION);
goto FREE_SRC;
}
printf("[%d][%s][%s]1G2D CMD TASK DESTROY SUCCESSFULL!\n", LINE |,

if(sunxi g2d control(G2D CMD TASK DESTROY, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD TASK DESTROY failure!\n", LINE ,
_ FILE , FUNCTION);
goto FREE_SRC;
)
printf("[%d][%s][%s]G2D CMD TASK DESTROY SUCCESSFULL!\n", LINE ,

5.3.5 G2D CMD TASK GET PARA

e PROTOTYPE
[int sunxi g2d control(int cmd, void *arg))
¢ ARGUMENTS

cmd G2D_CMD_TASK DESTROY

arg[o] task id

arg[1] femEmixer parafgft, ZMEETRESERAIEH
e RETURN
(o o, &M &KS)
% ioctl S HERRIREUERE task id BY mixer para,
PR BITRIEE ARIES FRIERBY AT B BEHX 4 SRS

WRINFE © HRB2ERRRNERAR. RE—IF 40

(Auwiner
NHEER: W

[raQ

6.1 & Ilja)&l

6.1.1 mt=E

G2D BHERAZFRHTEESET 1 pixelo

R
\,\""“ﬂe

WA © BSEERERHERAE. RE—TF 41

@LWIMIER
g MXHEER: WE

E{E =R

WRAXFAE © 2021 HKiEEERHRHDBRATE. RE—TIF,

AN RNBEREERUERP, HEENEKELTRERRGERAT (“2F) HEHRZ
_t)J*y*lJo

AR E2SHREFRMRRIM =, RELTFEITFA, FARUMTAFFEEHL. £
fil. B ARVEBRAIEABTHBIHEE, BERSFUEMAPHERE,

(ot

LLWINER LLWINER LLWIMWER'
C 2*?4&\2".:\ *‘I’ *i C (=275

é)ﬂhﬁﬁéuﬂ&kﬁﬁm VBB EEMER. EAEERNTmPHRNEERS
*T’ Fﬂﬂ%ﬂ: ﬂ]ﬂ[ﬁﬁz%ﬂ'\, igﬁﬂﬁ%@ﬁﬁﬁkﬁﬁo

REFNA

BHEO~m. RSFFENZRESHKEEEREROEBRAE (EE") 2EEENHIE
EFMFREILIR AXEPEARN2EHER D ™~ m. RS AFEAIRER A EFr LS fEBEERE
N EARIBIARRIRERFMMAERRA, HREREAXENERNR, ERBTREEH
FAYERITH (BEERRFINEE, 8, BRER) EMNAFER, £EMFARE,

ZISSU‘%H’E?JT@%?“ RESE BT mREARLEMRE, FAXEABTEREEN, 88X
B, BAFTEN. 2EREDNELAXEPREFEHNER, EHFTHERBTT2REHEIR, H
ﬁmzﬁﬁlﬁﬁﬁ?ﬁi#ﬁ% (BEEAFRTEHER. BN, BHHHRK) IRERILE=ZANNE
t, @EHAAT. AEPHFRERFRR. 58 MBINHF AR EARREERERIES &S,

AR UABRRE R R E B th 75 TR T 2 EERET AR~ N BRI R ER ™ mY
HiEd, AIRERERTE =ZFIINFFF BEBTRASEZANFANRBEXNIFA, TR
BUARRAZMAERRTREEZ S AR RZEMRR (TR . 2EFWEMRERNE=
BIFARAMEERRIE. BEFEERMX S,

WRINFE © HRB2ERRRNERAR. RE—IF 42

	概述
	文档简介
	适用范围
	目标读者

	模块功能特性介绍
	支持的format
	图层size
	矩形填充(fill color rectgngle)
	旋转和镜像(rotate and mirror)
	alpha blending
	colorkey
	缩放(Stretchblt)
	二元光栅操作(rop2)
	三元光栅操作(maskblt rop3)

	模块配置介绍
	数据结构
	g2d_blt_flags
	g2d_fillrect_flags
	g2d_data_fmt(version 1.0)
	g2d_pixel_seq(version 1.0)
	g2d_blt_flags_h
	g2d_image(version 1.0)
	g2d_image_enh
	g2d_fmt_enh
	g2d_rop3_cmd_flag
	g2d_bld_cmd_flag
	g2d_ck
	g2d_alpha_mode_enh
	g2d_color_gmt
	g2d_scan_order(version 1.0)
	g2d_blt(version 1.0)
	g2d_fillrect(version 1.0)
	g2d_stretchblt(version 1.0)
	g2d_blt_h
	g2d_bld(version 1.0)

	函数接口
	1.0版本接口
	G2D_CMD_BITBLT
	G2D_CMD_FILLRECT
	G2D_CMD_STRETCHBLT
	G2D_CMD_PALETTE_TBL

	2.0版本接口
	G2D_CMD_BITBLT_H
	G2D_CMD_BLD_H
	G2D_CMD_MASK_H

	批处理接口
	G2D_CMD_MIXER_TASK
	G2D_CMD_CREATE_TASK
	G2D_CMD_TASK_APPLY
	G2D_CMD_TASK_DESTROY
	G2D_CMD_TASK_GET_PARA

	FAQ
	常见问题
	输出宽度

