
Tina_Linux_NPU_Lenet 模型之从训练到端侧部署

版本号: 1.0
发布日期: 2021.07.21

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.0 2021.07.21 PDC NPU Lenet 模型部署实战

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 前言 1
1.1 读者对象 . 1
1.2 约定 . 1

1.2.1 符号约定 . 1

2 正文 2
2.1 NPU 开发简介 . 2
2.2 开发流程 . 2

3 Lenet 模型简介 3
3.1 模型训练 . 3
3.2 模型导入 . 6
3.3 导入模型 . 7

3.3.1 创建 input/output YML 文件 . 8
3.4 模型量化 . 10
3.5 模型预推理 . 10
3.6 导出代码和 NBG 文件 . 13
3.7 模型仿真 . 14

3.7.1 启动 IDE . 14
3.7.2 导入 ovxlib/lenet 工程 . 15
3.7.3 编译工程 . 18
3.7.4 配置仿真参数 . 19
3.7.5 仿真 . 20

3.8 模型 Profile . 22
3.9 端侧部署 . 24

3.9.1 交叉编译 ovxlib/lenet_nbg_viplite 工程 24
3.9.2 准备测试工程目录 . 26
3.9.3 准备端侧验证环境 . 26

3.10 验证 . 27
3.10.1 验证 tensor . 28

3.11 结束 . 29

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

插 图
2-1 npu_1.png . 2
3-1 npu 部署流程 . 3
3-2 lenet5 模型结构 . 4
3-3 lenet5 训练结果 . 4
3-4 lenet 模型文件 . 4
3-5 lenet 模型结构查看 . 5
3-6 部署目录结构 . 6
3-7 量化参考图像数据集 . 7
3-8 npu_import . 7
3-9 模型导入 . 8
3-10 模型结构描述 . 8
3-11 YML 文件生成 . 9
3-12 训练代码中的均值和 scale . 9
3-13 修改 input YML Scale 参数 . 10
3-14 量化表文件 . 10
3-15 tensor 输出 . 11
3-16 部署推理过程输出 . 12
3-17 softmax 输出 . 12
3-18 输入 tensor . 13
3-19 导出模型和工程代码 . 14
3-20 IDE 仿真 . 15
3-21 npu_prj_import . 16
3-22 npu_prj_ok . 17
3-23 npu_sim_ok . 18
3-24 npu_compile_ok . 18
3-25 npu_argu . 19
3-26 npu_arg_copy . 20
3-27 npu_run . 21
3-28 npu_sim_res . 21
3-29 npu_profile_con . 22
3-30 npu_profile_in . 23
3-31 npu_lenet_profile . 23
3-32 goldentensor . 24
3-33 npu sdk . 25
3-34 工程目录结构 . 25
3-35 工程 makefile . 25
3-36 npu_elf_res . 26
3-37 npu_test_env . 26
3-38 npu_device . 26
3-39 result . 27
3-40 npu_cmp_res . 27

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

3-41 nbinfo . 28
3-42 npu_fp16 . 28
3-43 npu_fp32 . 28

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iv

文档密级：秘密

1 前言

1.1 读者对象
本文档（本指南）主要适用于以下人员：

• 技术支持工程师
• 软件开发工程师
• AI 应用案客户

1.2 约定

1.2.1 符号约定

本文中可能出现的符号如下：

! 警告
警告

技巧
1. 技巧
2. 小常识

说明
说明

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 正文

2.1 NPU 开发简介
• 支持 int8/uint8/int16 量化精度，运算性能可达 1TOPS.

• 相较于 GPU 作为 AI 运算单元的大型芯片方案，功耗不到 GPU 所需要的 1%.

• 可直接导入 Caffe, TensorFlow, Onnx, TFLite，Keras, Darknet, pyTorch 等模型格式.
• 提供 AI 开发工具：支持模型快速转换、支持开发板端侧转换 API、支持 TensorFlow, TF
Lite, Caffe, ONNX, Darknet, pyTorch 等模型.

• 提供 AI 应用开发接口：提供 NPU 跨平台 API.

• 部署工具支持离线量化 (后训练量化,PTQ) 和量化感知训练 (QAT) 两类模型的导入，对于 QAT
训练得到的.tflite,onnx 格式模型，在模型 import 阶段会根据原生模型中的量化描述生成量化
表文件。

2.2 开发流程
NPU 开发完整的流程如下图所示：

图 2-1: npu_1.png

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

3 Lenet 模型简介

Lenet是一系列网络的合称，包括 Lenet1 - Lenet5，由 Yann LeCun等人在 1990年《Hand-
written Digit Recognition with a Back-Propagation Network》中提出，是卷积神经网络
的 HelloWorld。这里就以 lenet 为例介绍 AI model 在 tina 平台上部署从训练到端侧运行的全
部过程。

细分环节包括, 模型训练，模型导入，模型量化，模型推理，模型导出，模型仿真，模型 pro-
file，模型端侧部署几个部分. 用一幅图表示如下：

图 3-1: npu 部署流程

接下来从头开始介绍。

3.1 模型训练
本例中使用 keras 框架编写并训练 lenet5 网络，训练完成后，导出 h5 格式的模型文件,acuity
tools 原生支持 H5 格式.

模型结构：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

图 3-2: lenet5 模型结构

训练完成后，观察精度是否满足训练目标要求，本例精度达到了%97, 可以拿来部署说明问题:

图 3-3: lenet5 训练结果

输出保存模型为 lenet.h5,

图 3-4: lenet 模型文件

使用 netron 查看模型结构:

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

图 3-5: lenet 模型结构查看

至此，我们的原生模型已经产生，接下来就可以进行 PC侧以及端侧的部署了，下一个环节是模型
导入.

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

3.2 模型导入
在进行导入操作前，先看一下部署目录的结构：

如下图所示，其中 data 目录的图像来源于 mnist 数据集，作用是用来作为后训练量化的数据输
入，用于给量化算法提供输入参考，从而获知实际场景的数据输入分布.dataset.txt 则是对 data
目录的引用，工具会通过 dataset.txt 文件查找到 data 目录中的每张图片。

图 3-6: 部署目录结构

数据集：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

图 3-7: 量化参考图像数据集

3.3 导入模型
使用芯原提供的 acuity tool 中的 pegasus 工具进行模型的导入.

pegasus import onnx --model yolact-sim.onnx --output-model yolact-sim.json --output-data yolact-sim

.data

导入模型的目的是将开放模型转换为符合 VIP 模型网络描述文件 (.json) 和权重文件 (.data)

图 3-8: npu_import

接下来进行 lenet.h5 模型导入.

pegasus import keras --model lenet.h5 --output-data lenet.data --output-model lenet.json

执行成功后，可以看到目录中多了 lenet.json 和 lenet.data 文件，它们分别是符合芯原格式的

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

模型结构文件和模型权重文件.

图 3-9: 模型导入

导入阶段，pegasus 工具也会对模型结构进行解析并输出：

图 3-10: 模型结构描述

导入阶段到这里还没有完，我们需要生成对网络的输入输出描述文件，这也是 acuity tool 工具要
求的，输入输出描述是 YML 格式的文本文件，后面我们将通过修改 YML 文件来对模型参数，输
入/输出 tensor 格式等信息进行配置.

3.3.1 创建 input/output YML 文件

YML 文件对网络的输入和输出进行描述，比如输入图像的形状，归一化系数 (均值，零点)，图像
格式，输出 tensor 的输出格式，后处理方式等等，命令如下：

pegasus generate inputmeta --model lenet.json --input-meta-output lenet-inputmeta.yml pegasus

generate postprocess-file --model lenet.json --postprocess-file-output lenet-postprocess-file.yml

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

命令成功执行后，目录中又多了两个文件，分别是 input 和 output YML 文件。

图 3-11: YML 文件生成

至此，模型导入阶段的工作才算全部完成，从这里开始，模型已经被转成了芯原格式的模型文
件。后续步骤已经和原生模型没有太大关系了.

在执行下一步的模型量化前，我们需要修改 input yml 文件的 scale，mean 参数，使其和训练
时的参数保持一致.

训练代码中的均值和 scale 为：

图 3-12: 训练代码中的均值和 scale

根据代码，均值 mean = 0, scale 为 1/255 = 0.0039.

修改 YML 为对应值：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

图 3-13: 修改 input YML Scale 参数

3.4 模型量化
此款 NPU 支持 uint8,int8,int16 三种量化类型，基于推理速度和精度折衷的考虑，我们用
int8，非对称量化模式，量化命令如下：

pegasus quantize --model lenet.json --model-data lenet.data --batch-size 1 --device CPU --with-

input-meta lenet-inputmeta.yml --rebuild --model-quantize lenet.quantilize --quantizer asymmetric_affine

--qtype uint8

命令执行后，工程目录下可以看到新创建的量化表文件文件

图 3-14: 量化表文件

3.5 模型预推理
pegasus inference --model lenet.json --model-data lenet.data --batch-size 1 --dtype quantized --

model-quantize lenet.quantilize --device CPU --with-input-meta lenet-inputmeta.yml --postprocess-

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

file lenet-postprocess-file.yml --iterations 10

参数中，--batch-size 1表示每次推理处理 1 张图像，我们 dataset 目录中包含了 10 张图像，所
以要运行 10 次处理完毕，这也是后面参数--iterations 10的作用.

成功运行后，目录中多出了 20 个文本格式的.tensor 文件，文件中保存的是每张图像的输入和输
出的 tensor 数据，默认情况下，只对输入输出 tensor 进行保存，你可以通过下面命令将每层的
tensor 都保存下来:

pegasus dump --model lenet.json --model-data lenet.data --with-input-meta lenet-inputmeta.yml

推理结束后创建的 tensor 文件：

图 3-15: tensor 输出

我们从命令的输出来看，也可以看出推理是否正确, 我们以前六个为例，可以看到 top5 输出中，
每次概率最高的分别是 0,1,2,3,4 ….，和我们 dataset.txt 文件实际输入的图像数据顺序是相符
的。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

图 3-16: 部署推理过程输出

输出 tensor 则为最后一层的 softmax 输出，也就是分别为数字 0-9 的概率，以第 9 张图像的输
出 tensor 为例，概率最大的是 9, 如下图：

图 3-17: softmax 输出

输入则是输入图像正则化后的浮点数据：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

图 3-18: 输入 tensor

至此模型预推理阶段结束，进入下一步模型导出阶段.

3.6 导出代码和 NBG 文件
导出代码的命令如下，两次命令的区别只有选项 --pack-nbg-unify和--pack-nbg-viplite，其余完全相
同。其中--pack-nbg-unify生成的是仿真侧的代码，而--pack-nbg-viplite则会生成在端侧运行部署的
代码，两条命令分别执行一遍。

pegasus export ovxlib --model lenet.json --model-data lenet.data --dtype quantized --model-quantize

lenet.quantilize --batch-size 1 --save-fused-graph --target-ide-project 'linux64' --with-input-

meta lenet-inputmeta.yml --postprocess-file lenet-postprocess-file.yml --output-path ovxlib/lenet/

lenet --pack-nbg-unify --optimize "VIP9000PICO_PID0XEE" --viv-sdk ${VIV_SDK}

pegasus export ovxlib --model lenet.json --model-data lenet.data --dtype quantized --model-quantize

lenet.quantilize --batch-size 1 --save-fused-graph --target-ide-project 'linux64' --with-input-

meta lenet-inputmeta.yml --postprocess-file lenet-postprocess-file.yml --output-path ovxlib/lenet/

lenet --pack-nbg-viplite --optimize "VIP9000PICO_PID0XEE" --viv-sdk ${VIV_SDK}

执行结束后，工程代码和 NBG 文件都已经生成了:

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

图 3-19: 导出模型和工程代码

导出的 NBG 文件可以投入到 NPU 中运行.

ovxlib/lenet/工程用于仿真和 profile.

ovxlib/lenet_nbg_viplite/可以用部署在端侧运行.

ovxlib/lenet_nbg_unify 和 ovxlib/lenet_nbg_unify_ovx 暂时可以不用理会，没有用处。

接下来，进入模型仿真环节.

3.7 模型仿真
上文说到，ovxlib/lenet/是用于仿真和 profile 分析的工程，下面我们启动 IDE 运行仿真.

3.7.1 启动 IDE

启动 IDE 的命令如下:

~/VeriSilicon/VivanteIDE5.5.0/ide/vivanteide5.5.0

启动时，首先选择一个工作目录用于保存仿真工程：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

图 3-20: IDE 仿真

3.7.2 导入 ovxlib/lenet 工程

IDE 中，选择File->Import->General选项卡->Existing Projects into Workspace

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

图 3-21: npu_prj_import

之后选择模型导出阶段创建的工程目录 ovxlib/lenet/

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

图 3-22: npu_prj_ok

这里强烈建议选中 Copy projects into workspace, 这样我们的仿真工程将会拷贝一份到 IDE 工作空
间中，保证与导出空间隔离.

之后点击Finsih，结束导入过程. 导入后的工作空间如下所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

图 3-23: npu_sim_ok

3.7.3 编译工程

执行菜单命令 Project->Build All，先将仿真工程编译一下，看有没有犯低级错误 (比如导错工程了
等等.):

图 3-24: npu_compile_ok

编译 OK，生成了可执行 lenet 文件，我们进入下一步.

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

3.7.4 配置仿真参数

执行菜单命令Run->Debug Configurations...在选项卡中，双击OpenVX Application，即可出现下图的输
出，默认情况下 Search Project 和 Browser 按钮窗口会被正确设置成如下图的样子，如果没
有，请按照上面编译的结果正确选择工程和应用路径。

这个选项卡最最重要的设置是 Program arguments，不同的网络根据输入输出个数的不同，输入也不
尽相同，lenet 按照如下的方法设置:

图 3-25: npu_argu

其中 lenet.export.data 是量化权重，它是在模型导出阶段生成在 ovxlib/lenet 工程中的，工程
导入阶段已经自动拷贝到 IDE 仿真工程下，不需要手工拷贝，而 0.jpg 则需要手动拷贝到 IDE
工程下:

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

图 3-26: npu_arg_copy

输入除了图片，也可以是模型推理阶段生成的输入 tensor,仿真程序会根据后缀名自动运行到不同
的处理分支，保证处理结果都是对的。

点击 Apply, 之后就可以开始正式仿真了.

3.7.5 仿真

点击工具栏 Run 按钮，弹出对话框，直接点击 Run 触发仿真.

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

文档密级：秘密

图 3-27: npu_run

lenet 是很小的网络，仿真很快结束，输出如下, 根据下面控制台的输出可以看到，我们给的参数
图像是 0.jpg，而仿真输出的 top5 结果表明，推理结果为 0 的概率为%99.0023, 符合预期.

图 3-28: npu_sim_res

至此，模型仿真结束，进入模型 profile.

版权所有 © 珠海全志科技股份有限公司。保留一切权利 21

文档密级：秘密

3.8 模型 Profile

模型 profile 可以帮助分析网络的整体运行效率，带宽，帧率以及各层的处理性能，是分析算法精
度，性能瓶颈等问题的利器。

点击工具栏运行旁边的Profile按钮即可触发 Profile 操作，同样在选项卡中选择 Profile 按钮继
续.

图 3-29: npu_profile_con

之后点击 Resume 继续:

版权所有 © 珠海全志科技股份有限公司。保留一切权利 22

文档密级：秘密

图 3-30: npu_profile_in

Profile 结束后, IDE 输出如下：

图 3-31: npu_lenet_profile

简单分析一下 Profile 的信息，左下角和仿真结果输出相同，为推理 top5 的结果，中间的是各
层的运行情况统计，包括每层的硬件处理单元，读写带宽，对于由 PPU 计算的层，比如 soft-
max 层，还会有指令数统计等等。右下角的则是网络的整体运行性能分析，包括网络整体的读写
带宽，处理帧率，时钟数，等等信息。更具体地分析，请参考芯原文档。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 23

文档密级：秘密

接下来，我们到了最后一步，我们前面所作地一切工作地目的，就是要将网络部署在端侧，真正
地在板子上跑起来。我们开始端侧部署地介绍:

3.9 端侧部署
前面仿真阶段，仿真结束后，工程中生成了两个 bin 文件是我们部署验证要用到的，分别是 in-
put_0.dat 和 output0_10_1.dat, 它们都是二进制格式的文件。input_0.dat 是网络第一层的
输入，output0_10_1.dat 是网络最后一层的输出，由于根据仿真结果说明，这两笔数据都是正
确的，可以作为 golden 数据和端侧的运行结果进行对比，如果在同样的 input 下，端侧跑出的
output tensor 和 output_0._10_1.dat 是 binary identical 的，那就说明，端侧部署是正确
的。

理清了逻辑，我们开始动手操作，首先在仿真工程下认识一下这两个.dat, 下图左框中的蓝底文件:

图 3-32: goldentensor

接下来，我们用到模型导出阶段生成的另一个工程，ovxlib/lenet_nbg_viplite 工程.

3.9.1 交叉编译 ovxlib/lenet_nbg_viplite 工程

我们发布的 Tina SDK 将会包含 NPU 的开发 SDK，NPU 的开发 SDK 结构如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 24

文档密级：秘密

图 3-33: npu sdk

如果您拿到了 tina sdk，NPU 的 KMD 模块已经存在于 tina sdk 对应的 linux 内核代码中，而
用户态 SDK, 也就是图中的 npu runtime library(UMD Driver)，则在 SDK 的 package/all-
winner/目录下以库的形式存在。

接上文，我们将 ovxlib/lenet_nbg_viplite 拷贝出来，和 Tina 中 NPU runtime library 并列
放在一个目录下，按照下面的内容编写 makefile 文件（SDK 中将会包含一个 demo makefile).

图 3-34: 工程目录结构

图 3-35: 工程 makefile

工程目录中，sdk目录内容是NPU的用户态运行库，也就是 UMD驱动，而 lenet_nbg_viplite
目录中的内容，则是模型部署阶段产生的 lenet_nbg_viplite 工程加上 makefile 的结果。

接下来就可以交叉编译测试工程了，在 lenet_nbg_viplite目录，执行 make clean && make ,
执行结束后，在 out 目录将会生成可以在端侧跑的 lenet 测试程序。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 25

文档密级：秘密

图 3-36: npu_elf_res

交叉编译到此结束，接下来准备测试工程目录。

3.9.2 准备测试工程目录

测试工程目录的内容包括，模型 NBG 文件，lenet 可执行程序，两个 UMD 动态库以及仿真阶
段生成的 input_0.dat，一共 5 个文件，如下图所示：

图 3-37: npu_test_env

至此，测试目录已准备 OK，下面开始准备端侧验证平台。

3.9.3 准备端侧验证环境

首先，NPU运行的大是你的端侧存下下面的设备节点 /dev/vipcore，否则，说明 SDK配置是错
误的，请寻求我们的协助。

图 3-38: npu_device

将前面建立的测试目录保存到 tf 卡中，我们用 TF 卡作为媒介验证, 将 TF 卡插到端侧平台，之后
执行命令

mount -t vfat /dev/mmcblkxxx /mnt/sdcard

将其挂载到 /mnt/sdcard 目录，之后，进入 lenet-test 验证目录，执行命令

版权所有 © 珠海全志科技股份有限公司。保留一切权利 26

文档密级：秘密

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/mnt/sdcard/lenet-test

保证运行库可以被正确的连接到。

之后就可以正式测试了，执行测试命令

./lenet network_binary.nb input_0.dat

输出如下：

图 3-39: result

注意最后一行，可以看到测试目录下多了一个文件，output0_10_1.dat，他就是网络输出的结
果。

3.10 验证
我们得到了 tensor 的端侧运行结果，将他和仿真生成的.dat 做对比，预期情况应该是 binary
identical 的。

图 3-40: npu_cmp_res

结果 Binary Identical 的，和我们的预期一致.

版权所有 © 珠海全志科技股份有限公司。保留一切权利 27

文档密级：秘密

3.10.1 验证 tensor

根据前面网络结构的描述，网络的最后一层是 softmax,softmax 层输出概率值为浮点数，在芯原
的 NPU 设计中，存在三类计算单元，分别是 TP,NNE 和 PPU，这里面只有 PPU 支持浮点计
算，所以 softmax 层要在 PPU 上运行的。

我们看一下 NBG 文件中的输出层信息, 如下图所示，可以看到输出为浮点 FP16，没有量化，根
据上面验证 beyondcompare对比，我们也可以看出，tensor输出一共 20个字节。我们来计算
一下，lenet 分类网络一共识别十类目标，每一类的概率为 FP16，所以计算起来正好是 20 个字
节，由此我们知道了 output tensor 的结构。

图 3-41: nbinfo

既然知道了结构，我们就可以将运行产生的 output tensor 转换为概率打印出来，由于 32 位机
上不支持 FP16 的格式，所以需要将其转换为符合 ieee754 的 float32 格式，核心转换代码如
下:

图 3-42: npu_fp16

输出如下：

图 3-43: npu_fp32

对比仿真阶段的输出，得到的 TOP5 输出概率完全一样。说明我们的部署以及后处理是正确的。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 28

文档密级：秘密

至此，部署加验证过程全部结束 ~！

3.11 结束

版权所有 © 珠海全志科技股份有限公司。保留一切权利 29

文档密级：秘密

著作权声明

版权所有 ©2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 30

	前言
	读者对象
	约定
	符号约定

	正文
	NPU开发简介
	开发流程

	Lenet模型简介
	模型训练
	模型导入
	导入模型
	创建input/output YML文件

	模型量化
	模型预推理
	导出代码和NBG文件
	模型仿真
	启动IDE
	导入ovxlib/lenet工程
	编译工程
	配置仿真参数
	仿真

	模型Profile
	端侧部署
	交叉编译 ovxlib/lenet_nbg_viplite工程
	准备测试工程目录
	准备端侧验证环境

	验证
	验证tensor

	结束

