
Tina Linux AVS
使用指南

版本号: 1.1
发布日期: 2020-09-04

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.0 2019.07.02 AWA1379 创建
1.1 2020.02.19 AWA1402 重构 AVS 部分相关软件包的代码，更

新配置文件和软件包路径，与之前的版
本不兼容

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 概述 1

1.1 编写目的 . 1
1.2 适用范围 . 1

2 整体介绍 2
2.1 涉及到的软件包 . 2
2.2 avs-device-sdk . 2
2.3 avs-sampleapp . 3
2.4 avs-fetch-device-sn . 3
2.5 libpryon-lite . 3
2.6 tutuclear-lib . 4

2.6.1 配置 . 4
2.7 tconfigs . 4

2.7.1 tconfigs 配置文件说明 . 4
2.7.1.1 default.json . 4
2.7.1.2 dump_udisk.json . 8

3 编译配置 12

4 运行 Alexa Demo 18
4.1 获取设备 serial number . 18
4.2 联网 . 18
4.3 运行 SampleApp . 18

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

1 概述

1.1 编写目的
介绍 TinaLinux 平台上 AVS SDK 的简易使用，实现 Alexa Demo 开发。

1.2 适用范围
文档基于 Allwinner R18 搭载 AC108、GMEMS 方案（r18-noma）编写，适合 TinaLinux
的 AVS 开发和测试人员阅读。理论上只要 AVS 相关的软件包支持，在其他方案平台上也可用。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 整体介绍

2.1 涉及到的软件包
要运行一个 Alexa Demo，主要涉及到以下软件包（package）：

• avs-device-sdk：从 GitHub 上下载下来的 AVS SDK 官方源码包。
• avs-sampleapp：源码来自于 avs-device-sdk 中的 SampleApp，在其中做了一定的修改
以对接设备端。是 Alexa Demo 最顶层的软件入口。

• avs-fetch-device-sn：用于获取设备的 serial number，供 avs-sampleapp 使用。
• libpryon-lite：亚马逊提供的唤醒词识别算法库。
• tutuclear-lib：GMEMS 的音频前端处理算法库。
• tconfigs：以 JSON进行配置的中间件，供 avs-sampleapp使用，方便其适配不同的硬件平
台。

Alexa Demo 的运行还依赖于其他一些软件包（如播放依赖 GStreamer），详细请查看上述软
件包中 Makefile 的依赖关系。

2.2 avs-device-sdk

avs-device-sdk 是对接 Alexa 服务的 SDK，由亚马逊负责开发维护，在 GitHub 上发布。作为
设备端对接，只需要关注三件事情：

1. AFE（音频采集处理）输出的数据灌入 Shared Data Stream。
2. WakeWord Detection 对接对应的唤醒算法。SDK 中已经对接好 Sensory、Kitt.AI 等一些
唤醒算法，如果是使用它们，只要把对应的算法实现放进入，指定路径就可以使用。

3. SDK 处理好云端返回来的结果，通过 Gstreamer 去播放。GStreamer 播放的兼容性，需要
设备端解决。

在 Tina 中，avs-device-sdk 是直接使用从 GitHub 上下载的源码，只针对设备端的使用做了以
下改动：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

• 为解决在 Tina 环境中的编译报错问题，将 MediaPlayer 中的部分 NULL 改为 nullptr。
• 加入 AmazonLite（即 libpryon-lite）的 adapter 来对接它的唤醒算法。

其余更多对接设备端做的改动放在 avs-sampleapp 进行。

2.3 avs-sampleapp

avs-sampleapp 是将 avs-device-sdk 官方源码中的 SampleApp 抽取出来后，再加入与设备
端对接的改动而成。

它的软件包目录的 configs 文件夹中有当前支持的平台的配置文件，以 r18-noma 为例：

r18-noma
├── AlexaClientSDKConfig.json
├── tconfigs.d
│ ├── default.json
│ └── dump_udisk.json
├── tconfigs.json
├── tutuClearA1_ns4wakeup_mono.prm
└── tutuClearA1_ns4wakeup_stereo.prm

• AlexaClientSDKConfig.json：AVS SDK 的配置文件。
• tconfigs.json 和 tconfigs.d：tconfigs 的配置文件，设备端不同方案平台的差异在里面配
置。avs-sampleapp 运行时会寻找 AlexaClientSDKConfig.json 所在同一目录下的 tcon-
figs.json，在 tconfigs.json 里指定选用 tconfigs.d 里的哪一个配置文件。

• tutuClearA1_xxx.prm：tutuclear-lib的配置文件，选择哪一个来使用是在 tconfigs的配置
文件中指定。

2.4 avs-fetch-device-sn

获取设备的 serial number，写入到 AlexaClientSDKConfig.json的 deviceSerialNumber中（因
此需要确保 AlexaClientSDKConfig.json 是可写的）。

serial number 需要是设备唯一的，在 AVS SDK 的授权认证阶段使用。

2.5 libpryon-lite

亚马逊的唤醒词识别算法库，由亚马逊维护和授权使用。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

2.6 tutuclear-lib

tutuclear-lib 是 GMEMS 的音频前端处理算法库，主要的功能有：

1. 噪声压制
2. 回音消除
3. 识别音频流输出，适合机器做识别，用于云端识别
4. 识别音频流输出，没有加任何的数字增益，适合做能量检测，用于 ESP 处理
5. 通话音频流输出，适合人耳听，用于通话
6. DOA 信息输出

2.6.1 配置

tutuclear-lib 通过 prm 文件配置，在库初始化时，把 prm 文件解析成数据传给库。

2.7 tconfigs

tconfigs 是全志提供的以 JSON 进行配置的中间件，用来解决平台差异化问题，目的是通过配
置文件去让一套应用代码适配多个方案平台。目前支持音频采集通路和按键检测的配置，以及与
GMEMS 算法的对接。

2.7.1 tconfigs 配置文件说明

以 avs-sampleapp 中 r18-noma 的配置文件 default.json 和 dump_udisk.json 为例子。

2.7.1.1 default.json

{
// “record_pipeline”为整个录音的通路，这个名字会在 avs-sampleapp 中使用。
// 其中 pipeline、src、sink 等都是借鉴 GStreamer 的概念。
// 一个 pipeline 由多个 element 连接而成，element 相互间通过 pad 传输音频数据，
// 数据从一个 element 的 src pad 流出，流向下一个 element 的 sink pad
"record_pipeline" : {

// “engine”表示由哪一个 element 控制整个 pipeline 的数据流动，
// 一般选择数据源头的 element 作为 engine
"engine" : "alsa_src",
// “elements”中括起来的即表示这个 pipeline 由哪些 element 组成。
// “element_type”、“src_pads”、“sink_pads”这些关键字在不同 element 中都是通用的
"elements" : {

"alsa_src" : { // element 的名字，可以自行定义名字
// “element_type”表明该 element 的类型，每一个 element 都有这个关键字。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

// “AlsaSrc”是可从 ALSA 设备中获取音频数据的 element
"element_type" : "AlsaSrc",
// “src_pads”表明这个 element 有哪些 src pad。
// （如果一个 element 没有这个关键字表明它没有 src pad）
"src_pads" : {

// src pad 的名字，有些 element 可以自定义 pad 的名字，但有些不行。
// 此处 AlsaSrc 的 src pad 可以自定义名字
"capture_both" : {

// “peer_element”表明该 src pad 连接到哪个 element 的 sink pad
"peer_element" : "converter",
// “peer_pad”表明该 src pad 连接到 peer_element 的哪个 sink pad
"peer_pad" : "from_alsa_src"

}
},
// “devices”关键字表明 AlsaSrc 使用的录音设备配置
"devices" : {

// 此处“capture_both”是给 AlsaSrc 使用的名字，可以自行定义，
// 与实际使用的 ALSA 设备名字无关
"capture_both" : {

"device" : "hw:sndac10810035", // 打开的 ALSA 设备名字
"loop_frames" : 160, // 每次循环处理多少 frame 的数据
"access" : "RW_INTERLEAVED", // 数据传输的方式
"format" : "S16_LE", // 采样精度
"rate" : 16000, // 采样率
"channels" : 8, // 通道数
"period_frames" : 1024, // 即 ALSA 的参数 period_size
"periods" : 4 // 即 ALSA 的参数 periods

}
}

},
"converter" : {

// “Converter”类型的 element 可用于改变数据的存储方式（交错/非交错），
// 并可将某一通道的数据拷贝到另一通道
"element_type" : "Converter",
// “from_alsa_src”是该 sink pad 的名字，可以自行定义。
// 因为在上面“alsa_src”的配置中已经指定它名为“capture_both”的 src pad 是
// 连接到“converter”的名为“from_alsa_src”的 sink pad，因此此处可将
// sink pad 的“peer_element”和“peer_pad”省略掉
"sink_pads" : { "from_alsa_src" : {} },
// 此处定义了“common_out”和“reference_out”两个 src pad，
// 它们的名字可自行定义
"src_pads" : {

"common_out" : {
// “channel”表示从“common_out”输出的通道数，此处为 3 通道
"channels" : 3,
// “storage”表示从“common_out”输出的数据的存储方式，
// 可以为交错（interleaved）/非交错（noninterleaved）
"storage" : "noninterleaved",
"peer_element" : "tutuclear",
"peer_pad" : "common"

},
"reference_out" : {

// 从“reference_out”输出的通道数为 2
"channels" : 2,
// 从“reference_out”输出的数据以非交错的方式存储
"storage" : "noninterleaved",
"peer_element" : "tutuclear",
"peer_pad" : "reference"

}
},

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

// “channel_map”表示 Converter 将哪一个 sink pad 的什么通道的数据拷贝到
// 哪一个 src pad 的什么通道，格式为：
// "src_pad_name.channel_index" : "sink_pad_name.channel_index"
//
// 例如，"common_out.0" : "from_alsa_src.1" 表示：
// “common_out”的 channel 0 的数据来自于“from_alsa_src”的 channel 1；
// "reference_out.1" : "from_alsa_src.7" 表示：
// “reference_out”的 channel 1 的数据来自于“from_alsa_src”的 channel 7；
// 如此类推。
//
// 如果对应的 sink pad 与 src pad 的数据存储方式（交错/非交错）不相同，
// Converter 内部会自动进行转换。
"channel_map" : {

"common_out.0" : "from_alsa_src.1",
"common_out.1" : "from_alsa_src.3",
"common_out.2" : "from_alsa_src.5",
"reference_out.0" : "from_alsa_src.6",
"reference_out.1" : "from_alsa_src.7"

}
},
"tutuclear" : {

// “TutuclearElement”类型的 element 用于对接 GMEMS 的 tutuclear 算法
"element_type" : "TutuclearElement",
"sink_pads" : {

// 此处 sink pad 的名字固定为“common”和“reference”，
// 通道数的配置看实际算法库而定，由 prm 文件控制
"common" : { "channels" : 3 },
"reference" : { "channels" : 2 }

},
"src_pads" : {

"output" : {
"channels" : 3,
"peer_element" : "tutuclear_output_converter",
"peer_pad" : "from_tutuclear"

}
},
// 指定 prm 文件的路径
"prm_file" : "/etc/avs/tutuClearA1_ns4wakeup_stereo.prm",
// 采样精度
"format" : "S16_LE",
// 采样率
"rate" : 16000,
// 每次循环处理多少 frame 的数据。
// GMEMS 算法要求每次循环处理 10ms 的数据，因此采样率为 16000Hz 时，为：
// 16000 * 0.01 = 160
"loop_frames" : 160,
// GMEMS 算法要求输入输出数据的存储方式均为非交错
"storage" : "noninterleaved"

},
// 此处定义一个 Converter 将“tutuclear”输出数据中给云端识别用的通道取出来，
// 并转成非交错的存储方式，给 AVS SDK 使用
"tutuclear_output_converter" : {

"element_type" : "Converter",
"sink_pads" : { "from_tutuclear" : {} },
"src_pads" : {

"output" : {
"channels" : 1,
"format" : "S16_LE",
"storage" : "interleaved",
"peer_element" : "common_sink",

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

"peer_pad" : "from_tutuclear_output_converter"
}

},
"channel_map" : {

"output.0" : "from_tutuclear.0"
}

},
// “common_sink”的名字会在 avs-sampleapp 中使用
"common_sink" : {

// “CommonSink”类型的 element 单纯只接收音频数据，不做额外处理，
// 通常放在一个 pipeline 的结尾，当收到数据时可发送一个 signal，
// 通知 pipeline 外部已获取到数据
"element_type" : "CommonSink",
"sink_pads" : { "from_tutuclear_output_converter" : {} },
// “data_got_signal”表示收到音频数据时发送什么信号，
// 此处信号的名字为“DataGot”，在 avs-sampleapp 中会用上
"data_got_signal" : "DataGot"

}
}

},

// “key_manager”用于配置按键，这个名字会在 avs-sampleapp 中使用。
"key_manager" : {

// “built_in_executor_threads”表示使用多少个线程处理按键的回调函数。
// 如果使用的线程数为 1，则上一个按键的回调函数执行完之前，不会响应其他按键的回调函数。
"built_in_executor_threads" : 2,
// “behaviors”表示有哪些按键行为，其名字和对应的回调函数都在 avs-sampleapp 中定义。
// 当前支持的按键行为有“VolumeUp”（音量增）、“VolumeDown”（音量减）和“Mute”（静音）
"behaviors" : {

// 音量增
"VolumeUp" : {

// 此处“SW1”为按键的名字，可以自行定义。
// 如果单个 behavior 中定义了多个按键名字，表示该行为由组合按键触发。
"SW1" : {

// “input_device”表示该按键对应哪一个输入设备，
// 名字要与 /sys/class/input/inputXX/name 中的相同
"input_device" : "sunxi-keyboard",
// 按键的键值
"code" : 115,
// “motion”为需要检测的按键的动作，当前支持：
// “Press”：按下
// “Release”：释放
// “LongPressPreRelease”：长按一定时间，在释放前响应
// “LongPressPostRelease”：长按一定时间，在释放后响应
// 长按的动作还会多一个配置项“duration_sec”表示长按的时间，数值为浮点型
"motion" : "Press"

}
},
// 音量减
"VolumeDown" : {

"SW2" : {
"input_device" : "sunxi-keyboard",
"code" : 114,
"motion" : "Press"

}
},
// 静音
"Mute" : {

"SW3" : {
"input_device" : "sunxi-keyboard",

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

"code" : 113,
"motion" : "Press"

}
}

}
}

}

2.7.1.2 dump_udisk.json

dump_udisk.json 和 default.json 的配置项大体相同，只是增加了将 ALSA 录音数据和
GMEMS 处理结果数据保存到文件中的功能。大体的做法是将需要保存的数据使用 Converter
拷贝一份，传输给 DataQueue 缓冲，最后送到 FileSink 写入到文件中。

{
"record_pipeline" : {

"engine" : "alsa_src",
"elements" : {

"alsa_src" : {
"element_type" : "AlsaSrc",
"src_pads" : {

"capture_both" : {
"peer_element" : "converter",
"peer_pad" : "from_alsa_src"

}
},
"devices" : {

"capture_both" : {
"device" : "hw:sndac10810035",
"loop_frames" : 160,
"access" : "RW_INTERLEAVED",
"format" : "S16_LE",
"rate" : 16000,
"channels" : 8,
"period_frames" : 1024,
"periods" : 4

}
}

},

// “converter”增加了“common_out_copy”和“reference_out_copy”两个 src pad，
// 相当于将原先“common_out”和“reference_out”的数据拷贝一份，然后传输给
// “common_dump_queue”和“reference_dump_queue”这两个 element。
"converter" : {

"element_type" : "Converter",
"sink_pads" : { "from_alsa_src" : {} },
"src_pads" : {

"common_out" : {
"channels" : 3,
"storage" : "noninterleaved",
"peer_element" : "tutuclear",
"peer_pad" : "common"

},
"reference_out" : {

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

"channels" : 2,
"storage" : "noninterleaved",
"peer_element" : "tutuclear",
"peer_pad" : "reference"

},
"common_out_copy" : {

"channels" : 3,
"storage" : "interleaved",
"peer_element" : "common_dump_queue",
"peer_pad" : "from_converter_common_out_copy"

},
"reference_out_copy" : {

"channels" : 2,
"storage" : "interleaved",
"peer_element" : "reference_dump_queue",
"peer_pad" : "from_converter_reference_out_copy"

}
},
"channel_map" : {

"common_out.0" : "from_alsa_src.1",
"common_out.1" : "from_alsa_src.3",
"common_out.2" : "from_alsa_src.5",
"reference_out.0" : "from_alsa_src.6",
"reference_out.1" : "from_alsa_src.7",

"common_out_copy.0" : "from_alsa_src.1",
"common_out_copy.1" : "from_alsa_src.3",
"common_out_copy.2" : "from_alsa_src.5",
"reference_out_copy.0" : "from_alsa_src.6",
"reference_out_copy.1" : "from_alsa_src.7"

}
},

"tutuclear" : {
"element_type" : "TutuclearElement",
"sink_pads" : {

"common" : { "channels" : 3 },
"reference" : { "channels" : 2 }

},
"src_pads" : {

"output" : {
"channels" : 3,
"peer_element" : "tutuclear_output_converter",
"peer_pad" : "from_tutuclear"

}
},
"prm_file" : "/etc/avs/tutuClearA1_ns4wakeup_stereo.prm",
"format" : "S16_LE",
"rate" : 16000,
"loop_frames" : 160,
"storage" : "noninterleaved"

},

// “tutuclear_output_converter”中同样增加一个 src pad “output_copy”
// 拷贝 GMEMS 算法输出的数据，传输给“tutuclear_dump_queue”
"tutuclear_output_converter" : {

"element_type" : "Converter",
"sink_pads" : { "from_tutuclear" : {} },
"src_pads" : {

"output" : {

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

"channels" : 1,
"format" : "S16_LE",
"storage" : "interleaved",
"peer_element" : "common_sink",
"peer_pad" : "from_tutuclear_output_converter"

},
"output_copy" : {

"channels" : 1,
"format" : "S16_LE",
"storage" : "interleaved",
"peer_element" : "tutuclear_dump_queue",
"peer_pad" : "from_tutuclear_output_converter"

}
},
"channel_map" : {

"output.0" : "from_tutuclear.0",
"output_copy.0" : "from_tutuclear.0"

}
},

"common_sink" : {
"element_type" : "CommonSink",
"sink_pads" : { "from_tutuclear_output_converter" : {} },
"data_got_signal" : "DataGot"

},

// 以下“DataQueue”类型的 element 的作用是缓存数据，
// 避免音频数据写入文件时速度太慢而影响原先的录音流程。
// 不同于一般的 element，DataQueue 的 sink pad 接收数据与
// src pad 发送数据是异步的，它们在不同的线程中执行：
// 只要 DataQueue 内部缓冲的 buffer 没有满，sink pad 接收数据后会马上返回；
// 而 src pad 是只要 buffer 中存在数据，就会持续发送。
"common_dump_queue" : {

"element_type" : "DataQueue",
// “max_buffers” 为 DataQueue 内部缓冲 buffer 的大小，
// 表示最大可缓冲多少个循环周期的数据
"max_buffers" : 20,
"sink_pads" : { "from_converter_common_out_copy" : {} },
"src_pads" : {

"output" : {
"peer_element" : "common_dump",
"peer_pad" : "from_common_dump_queue"

}
}

},
"reference_dump_queue" : {

"element_type" : "DataQueue",
"max_buffers" : 20,
"sink_pads" : { "from_converter_reference_out_copy" : {} },
"src_pads" : {

"output" : {
"peer_element" : "reference_dump",
"peer_pad" : "from_reference_dump_queue"

}
}

},
"tutuclear_dump_queue" : {

"element_type" : "DataQueue",
"max_buffers" : 20,
"sink_pads" : { "from_tutuclear_output_converter" : {} },

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

"src_pads" : {
"output" : {

"peer_element" : "tutuclear_dump",
"peer_pad" : "from_tutuclear_dump_queue"

}
}

},

// 以下“FileSink”类型的 element 用于将音频数据保存到文件中
"common_dump" : {

"element_type" : "FileSink",
// 保存的文件类型，支持“wav”或“pcm”
"type" : "wav",
// 保存的文件路径
"path" : "/mnt/UDISK/common.wav",
"sink_pads" : { "from_common_dump_queue" : {} }

},
"reference_dump" : {

"element_type" : "FileSink",
"type" : "wav",
"path" : "/mnt/UDISK/reference.wav",
"sink_pads" : { "from_reference_dump_queue" : {} }

},
"tutuclear_dump" : {

"element_type" : "FileSink",
"type" : "wav",
"path" : "/mnt/UDISK/tutu_out.wav",
"sink_pads" : { "from_tutuclear_dump_queue" : {} }

}
}

},

"key_manager" : {
"built_in_executor_threads" : 2,
"behaviors" : {

"VolumeUp" : {
"SW1" : {

"input_device" : "sunxi-keyboard",
"code" : 115,
"motion" : "Press"

}
},
"VolumeDown" : {

"SW2" : {
"input_device" : "sunxi-keyboard",
"code" : 114,
"motion" : "Press"

}
},
"Mute" : {

"SW3" : {
"input_device" : "sunxi-keyboard",
"code" : 113,
"motion" : "Press"

}
}

}
}

}

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

3 编译配置

menuconfig 配置如下：

首先在 Thirdparty ---> AVS 中选上 avs-fetch-device-sn 和 avs-sampleapp，此时其他大多数依
赖的软件包会自动选上：

Allwinner --->
-*- tconfigs

Thirdparty --->
AVS --->

-*- avs-device-sdk
<*> avs-fetch-device-sn
<*> avs-sampleapp

-*- libpryon-lite
-*- tutuclear-lib

因为 AVS SDK 播放使用 GStreamer，需要把 Multimedia 中 GStreamer 各个 plugin 的模块手
动选上（plugin 整体的 package 已经被自动选上，但里面的 modules 需要手动选上。其余没
有被自动选上的 plugin package（如 ugly）可以不用管）：

-*- gst1-libav.. GStreamer Libav plugin
Select GStreamer libav configuration options --->

-*- gstreamer1-libs................................. GStreamer core libraries
Select GStreamer libraries --->

< > gstreamer1-plugins-aw.................. GStreamer plugins collection (aw)
-*- gstreamer1-plugins-bad................ GStreamer plugins collection (bad)

Select GStreamer bad modules and libraries --->
-*- gstreamer1-plugins-base.............. GStreamer plugins collection (base)

Select GStreamer base modules and libraries --->
-*- gstreamer1-plugins-good.............. GStreamer plugins collection (good)

Select GStreamer good modules --->
< > gstreamer1-plugins-ugly.............. GStreamer plugins collection (ugly)
< > gstreamer1-utils..................................... GStreamer utilities

gst1-libav 的 Select GStreamer libav configuration options 维持默认值即可：

[] Enable IPv6 (NEW)
[*] Include patented codecs and technologies (NEW)
[*] Include support for common audio/video decoders (NEW)

*** Encoders --- ***
[] AC3 (NEW)
[] JPEG-LS (NEW)

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

[] MPEG-1 Video (NEW)
[] MPEG-2 Video (NEW)
[] MPEG-4 (NEW)
[] PCM signed 16-bit big-endian (NEW)
[] PCM signed 16-bit little-endian (NEW)
[] PNG (NEW)
[] Vorbis (NEW)
[] Zlib (NEW)

*** Decoders --- ***
-*- AAC (Advanced Audio Coding)
-*- AC3
-*- ATRAC3
[] GIF (NEW)
-*- H.264
-*- JPEG-LS
[] MP2 (MPEG Audio Layer 2) (NEW)
-*- MP3 (MPEG Audio Layer 2)
-*- MPEG Video
-*- MPEG-1 Video
-*- MPEG-2 Video
-*- MPEG-4
-*- MPEG-4 (AAC)
-*- PCM signed 16-bit big-endian
-*- PCM signed 16-bit little-endian
-*- PNG
-*- Vorbis
-*- WMAv1
-*- WMAv2
-*- Zlib

*** Muxers --- ***
[] AC3 (NEW)
[] FFM (ffserver live feed) (NEW)
[] H.264 (NEW)
[] MP3 (MPEG Audio Layer 3) (NEW)
[] MP4 (NEW)
[] MPEG-1 Video (NEW)
[] MPEG-2 Video (NEW)
[] MPEG-2 (TS) (NEW)
[] Ogg (NEW)
[] OSS (Open Sound System playback) (NEW)
[] RTP (NEW)

*** Demuxers --- ***
-*- AC3
[] FFM (ffserver live feed) (NEW)
-*- H.264
-*- MP3 (MPEG Audio Layer 3)
-*- MPEG Video
[] MPEG-2 (PS) (NEW)
[] MPEG-2 (TS) (NEW)
-*- Ogg
[] RM (NEW)
[] RTSP (NEW)
[] SDP (NEW)

*** Parsers --- ***
-*- AAC (Advanced Audio Coding)
-*- AC3
-*- H.264
-*- MPEG Audio
-*- MPEG Video
-*- MPEG-4 Video

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

*** Protocols --- ***
[] file: (NEW)
[] http: (NEW)
[] pipe: (NEW)
[] rtp: (NEW)
[] tcp: (NEW)
[] udp: (NEW)

gstreamer1-libs 的 Select GStreamer libraries 全选上：

[*] Include all GStreamer1 core libraries
*** Libraries ***

-*- GStreamer core library libgstreamer1
-*- GStreamer core library libgst1check
-*- GStreamer core library libgst1controller
-*- GStreamer core library libgst1net

gstreamer1-plugins-bad的 Select GStreamer bad modules and libraries中把常用的音频解码模块
选上，其余的按需选择，可参考以下例子：

[] Include all GStreamer bad plugins (NEW)
*** Modules ***

<*> GStreamer adpcmdec module
<*> GStreamer adpcmenc module
<*> GStreamer aiff module
<*> GStreamer asfmux module
<*> GStreamer autoconvert module
< > GStreamer bayer module (NEW)
< > GStreamer camerabin module (NEW)
<*> GStreamer debugutilsbad module
< > GStreamer dvdspu module (NEW)
< > GStreamer fbdevsink module (NEW)
< > GStreamer waylandsink module (NEW)
< > GStreamer festival module
<*> GStreamer hls module
< > GStreamer frei0r module (NEW)
<*> GStreamer id3tag module
< > GStreamer jpegformat module (NEW)
<*> GStreamer mpegpsdemux module
<*> GStreamer mpegpsmux module
<*> GStreamer mpegtsdemux module
<*> GStreamer mpegtsmux module
< > GStreamer mxf module (NEW)
<*> GStreamer opusparse module
< > GStreamer pcapparse module (NEW)
< > GStreamer pnm module (NEW)
<*> GStreamer legacyrawparse module
< > GStreamer rfbsrc module (NEW)
< > GStreamer sdpelem module (NEW)
< > GStreamer segmentclip module (NEW)
< > GStreamer shm module (NEW)
< > GStreamer siren module (NEW)
< > GStreamer speed module (NEW)

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

< > GStreamer subenc module (NEW)
< > GStreamer videoparsersbad module (NEW)
< > GStreamer smoothstreaming module (NEW)
< > GStreamer openglmixers module (NEW)

*** Libraries ***
-*- GStreamer adaptivedemux library
< > GStreamer badvideo library (NEW)
< > GStreamer photography library (NEW)
< > GStreamer basecamerabinsrc library (NEW)
-*- GStreamer uridownloader library
-*- GStreamer mpegts library
< > GStreamer wayland library (NEW)
-*- GStreamer codecparsers library
< > GStreamer isoff library (NEW)
< > GStreamer opencv library (NEW)

gstreamer1-plugins-base的 Select GStreamer base modules and libraries中也把常用的音频解码
模块选上，其余按需选择，可参考：

[] Include all GStreamer base plugins (NEW)
*** Modules ***

-*- GStreamer alsa module
<*> GStreamer app module
<*> GStreamer audioconvert module
<*> GStreamer audiorate module
<*> GStreamer audioresample module
<*> GStreamer audiotestsrc module
<*> GStreamer playback module
< > GStreamer gio module (NEW)
-*- GStreamer ogg module
<*> GStreamer opus module
<*> GStreamer tcp module
< > GStreamer theora module (NEW)
<*> GStreamer typefindfunctions module
< > GStreamer videoconvert module (NEW)
< > GStreamer videorate module (NEW)
< > GStreamer videoscale module (NEW)
< > GStreamer videotestsrc module (NEW)
<*> GStreamer volume module
<*> GStreamer vorbis module

*** Libraries ***
< > GStreamer allocators library (NEW)
-*- GStreamer app library
-*- GStreamer audio library
<*> GStreamer fft library
-*- GStreamer pbutils library
-*- GStreamer riff library
-*- GStreamer rtp library
< > GStreamer rtsp library (NEW)
< > GStreamer sdp library (NEW)
-*- GStreamer tag library
-*- GStreamer video library

同样，gstreamer1-plugins-good的 Select GStreamer good modules把常用的音频解码模块选上，
其余按需选择。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

! 警告
如果当前方案平台的 PulseAudio 没有配置好，不能选上 PulseAudio 的模块，不然播放时可能没有声
音。因为 GStreamer 播放时，若 PulseAudio 与 ALSA 同时存在，会优先使用 PulseAudio。

模块的选择可参考：

[] Include all GStreamer good plugins (NEW)
*** Modules ***

<*> GStreamer alaw module
< > GStreamer alpha module
< > GStreamer alphacolor module (NEW)
<*> GStreamer apetag module
<*> GStreamer audiofx module
<*> GStreamer audioparsers module
<*> GStreamer auparse module
<*> GStreamer autodetect module
< > GStreamer avi module (NEW)
<*> GStreamer cutter module
<*> GStreamer debug module
< > GStreamer deinterlace module (NEW)
<*> GStreamer dtmf module
< > GStreamer effectv module (NEW)
<*> GStreamer equalizer module
<*> GStreamer flac module
< > GStreamer flv module (NEW)
< > GStreamer flxdec module (NEW)
< > GStreamer goom2k1 module (NEW)
< > GStreamer goom module (NEW)
<*> GStreamer icydemux module
<*> GStreamer id3demux module
< > GStreamer imagefreeze module (NEW)
<*> GStreamer interleave module
< > GStreamer isomp4 module (NEW)
< > GStreamer jpeg module (NEW)
<*> GStreamer level module
< > GStreamer matroska module (NEW)
<*> GStreamer mulaw module
-*- GStreamer multifile module
< > GStreamer multipart module (NEW)
<*> GStreamer navigationtest module
< > GStreamer oss4 module
< > GStreamer ossaudio module (NEW)
< > GStreamer png module (NEW)
< > GStreamer pulseaudio module (NEW)
<*> GStreamer replaygain module
<*> GStreamer rtpmanager module
<*> GStreamer rtp module
<*> GStreamer rtsp module
< > GStreamer shapewipe module (NEW)
< > GStreamer smpte module (NEW)
<*> GStreamer soup module
<*> GStreamer spectrum module
<*> GStreamer udp module
< > GStreamer video4linux2 module (NEW)
< > GStreamer videobox module (NEW)
< > GStreamer videocrop module (NEW)

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

< > GStreamer videofilter module (NEW)
< > GStreamer videomixer module (NEW)
< > GStreamer vpx module (NEW)
<*> GStreamer wavenc module
<*> GStreamer wavparse module

另外，可能需要把裁剪 rootfs 的选项去掉，不然 GStreamer 相关的库可能会被裁剪掉（因为
GStreamer 的库使用 dlopen 的方式打开，库之间的依赖关系可能无法完整检测到）：

Target Images --->
取消选择 [] downsize the root filesystem or initramfs

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

4 运行 Alexa Demo

4.1 获取设备 serial number

第一次烧写固件后，需要先获取设备的 serial number 并写入到 AVS SDK 的配置文件中：

avs-fetch-device-sn /etc/avs/AlexaClientSDKConfig.json

说明
/etc/avs/AlexaClientSDKConfig.json 为 AVS SDK 的配置文件（需要确保它是可写的）。

4.2 联网
可以使用任意方式联网，以下使用 wifimanager 为例子：

wifi_connect_ap_test <ssid> <password>

4.3 运行 SampleApp

SampleApp <path_to_AlexaClientSDKConfig.json> [log_level]

• path_to_AlexaClientSDKConfig.json 为 AVS SDK 的配置文件。
• log_level 为调试打印等级，是可选的配置，可设置为 DEBUG0～DEBUG9。

期间会往 path_to_AlexaClientSDKConfig.json 所在目录写入文件，需要确保该目录可写。

例如：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

SampleApp /etc/avs/AlexaClientSDKConfig.json DEBUG0

第一次运行时间会稍微长一些，然后可看到类似以下等待授权的打印信息：

##################################
NOT YET AUTHORIZED
##################################

##
To authorize, browse to: 'https://amazon.com/us/code' and enter the code: XXXXXX
##

###
Checking for authorization (1)...
###

打开浏览器访问 https://amazon.com/us/code 并登录亚马逊账号，填入打印信息中的 code，
即可授权。

授权成功后可看到打印：

###########################
Authorized!
###########################

稍候看到以下打印后即可与 Alexa 进行交互：

##
Alexa is currently idle!
##

授权成功后下次再运行 SampleApp 就不需要再授权，除非重新烧录固件。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

著作权声明

版权所有 ©2020 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

	概述
	编写目的
	适用范围

	整体介绍
	涉及到的软件包
	avs-device-sdk
	avs-sampleapp
	avs-fetch-device-sn
	libpryon-lite
	tutuclear-lib
	配置

	tconfigs
	tconfigs 配置文件说明
	default.json
	dump_udisk.json

	编译配置
	运行 Alexa Demo
	获取设备 serial number
	联网
	运行 SampleApp

