< Avuwiner

RTOS CCU
At

RAS: 1.1
&K% AE: 2021.04.27

@LWIIWER

MHER: WE

hR s [52
hRZs S =L HAZITA AEHR
1.0 | 2020.10.23 AWA1637 1. iR
1.1 | 2021.04.27 AWA1637 1. #8150 F133 fEFI%AA

WRINFE © HRB2ERRRNERAR. RE—IF

@LWIMIER

MHER: WE

1 #is 1
1.1 STEEEITY . . o e e 1
1.2 BAREE e 1
1.3 EASEE o 1

2 BERNE 2
2.1 BERIDEENB e 2
2.2 BRAREBNA e 2
2.3 BHRECENB o o e 2

2.3.1 EWERE 2
2.3.2 platform BEE& 2
2.4 BHURRBEEM e 3
2.5 REREUEBLEM e 5
2.5.1 BIFMEIBEEHD e 5
2.5.2 BIFRSEBIEIBEEM 5
253 BHES . . . e 6
254 rst &M ..o 7
2.5.5 TSt EBIEMK . L e 7
256 TSEFES . . . e 7

3 EREOREA 9
3.1 BOFIKR £, . e 9

4 1EREREH 10
4.1 FAQ . . e e e e e 11

IRAIFTE © BBLERBRHERAT, RE—IF ii

@LWIMIER

MHER: WE

1.1 XHEfET

7148 RTOS # CCU RappviAREMAE, 7 CCU ERERESE,

1.2 BiRRE

CCU WahR/NREF &R /MER/HEF A S

1.3 EREE

® 1-1 EFEmYIER

@B WNiZhR 7 IR A4

V459 Melis hal clk.c
R328 FreeRTOS hal clk.c
F133 Melis hal clk.c

WA © BSEERERHERAE. RE—TF

@LWIMIER
: KRER: W

2.1 {RIRINBENLE

N ERRIRE BN RTOESEHERN TR RBRIREE, — P MEGEREEET
5, BAFGREFBHNITEME. THREFEFX. SLNRFXEFERE, HHEERRNICE
IXEhiR (A —RYIR RO, TQBIZﬂJTﬁHQEIL\E]‘%EIJEE#;*JLE’JﬂfMEHﬂo

2.2 *E?é*ll:l) éjl::l,

& 2-1: CCU #ERIBXAIENA

Ri& fRRRI%ER

SUNXI Allwinner =%&%!| SOC 44

iR A7 ER, SiREEE R ZIMZE, W 32K/24MHz &, 25 RFER#aEL

PLL BiIAE S FRRNESHRGESHWERIRAMERH

Vg XS F BRI NNSES, SHARASNIBEHEREEENFES, ALEENHESEEE

2.3 BEREEE TR

2.3.1 EFWEE
B] L E| Kernel Setup-> Driver Setup->Soc Hal Drivers->CCMU Driver FHEHE Enable
ccmu driver ETHTF, LEEIBKH R NED, WRE V459 K& V459 LUFItIHFES, & enable

sunxi ccmu driver, $1R2 F133 UEHF&1%EH enable sunxi-ng ccmu driver, JIRFE
MIXA ccu-ng BITHAE, BILUIE enable sunxi-ng ccmu hal APIs test command #EIRFTH

2.3.2 platform BC&

AR Sunxi B4 FEH, CCU MIRIHEE?, BEFaEEXHIEREREM, WTF:

IR © HiB2EREROBIRAR. RE—INF 2

@LW/MIER
KRER: W

rtos-hal/source/ccmu/sunxi-ng
| F ccu-sun8iw20.c

| | ccu-sun8iw20.h

| | ccu-sun8iw20-r.c

| | ccu-sun8iw20-r.h
|
|

F— rst-sun8iw20.h
L— rst-sun8iw20-r.h

Hrh ccu-xxxx.c TEGFEFNFEAEMRH clk B2&E, ccu-xxx.h TEGLSENEHM clk F5,
FIRRNHEXNEENBAE rstxxx.h FEGSEMNHD rst iIfE, FIARANHEXNEERN
BE

2.4 KRS

RTC BRIRELEHTIN R

F— common ccmu.h
— hal clk.c
F— hal clk.o
— hal reset.c
— hal reset.o
— Kconfig
— Makefile
— modules.order
— platform ccmu.h
— platform rst.h
F— sunxi
| b built-in.o
| | clk.c
| F— clk factors.c
| b clk factors.h
| F clk factors.o
| F clk.h
| | clk.o
| | clk_periph:c
| b clk periph.h
| | clk_periph.o
| |— Makefile
| — modules.order
| | platform clk.h
| F— sun8iwispl
| | F— clk _sun8iwl8.c
| | '“— clk sun8iwl8.h
| L— sun8iwl9pl
| F— built-in.o
| F— clk sun8iwl9.c
| F— clk_sun8iw19.h
| F— clk_sun8iwl9.
| — Makefile
L— sunxi-ng

— ccu.c

F— ccu_common.c

F— ccu_common.h

F— ccu _common.o

F— ccu div.c

o

IR © HiB2EREROBIRAR. RE—INF 3

@LW/MIER

XAEER:

F— ccu div.h
F— ccu div.o
— ccu frac.
F— ccu_frac.
b— ccu_frac.
F— ccu gate.
F— ccu gate.
F— ccu gate.
F— ccu.h

F— ccu mp.c
F— ccu_mp.h
F— ccu mp.o
F— ccu mult.c
F— ccu mult.h
F— ccu_mult.o
F— ccu_mux.c
F— ccu mux.h
F— ccu mux.o
F— ccu nk.c
F— ccu nk.h

F— ccu nkm.c
F— ccu_nkm.h

F— ccu_nkm.o
F— ccu nkmp.c
F— ccu nkmp.h
F— ccu nkmp.o
— ccu_nk.o
F— ccu_nm.c
F— ccu nm.h
F— ccu nm.o
— ccu.o

— ccu_phase.

— ccu_phaset.
F— ccu_reset.

F— ccu reset.
F— ccu reset.
F— ccu_sdm.c
F— ccu sdm.h
— ccu_sdm.o
F— ccu-sun8iw20.c

F— ccu-sun8iw20.h

F— ccu-sun8iw20.6

F— ccu-sun8iw20-r.c
F— ccu-sun8iw20-r.h
F— ccu-sun8iw20-r.o

o S 0 O T o0

o T 0o TS o

— clk.c
— clk-divider.c

F— clk-divider.o

— clk-fixed-rate.c
F— clk-fixed-rate.h
F— clk-fixed-rate.o
— clk.h
— clk.o

— Makefile
F— rst-sun8iw20.h

F— ccu-sun8iw20-rtc.
F— ccu-sun8iw20-rtc.h
F— ccu-sun8iw20-rtc.o

F— clk-fixed-factor.
F— clk-fixed-factor.

IR © HiB2EREROBIRAR. RE—INF

@ LWIWER
MXHEER: WE

l L— rst-sun8iw20-r.h J

2.5 RIRBHEE

ccu-ng IR LG HMRIRER AR OB ERE/RBERI B, (ERE/RAE rst, IRBXEIH, REME
FF, TENETEEAIN—EHIESEM,

2.5.1 BYEhERHREE
BB ERREN NS, bRRENMAXRENENIELN, RENEESD
AR R RF,

£ V459 ZHINT S, ZEWEME— 1N, RANWNTRS, AREANHEENE M ED,
E XA LTE platform_ccmu.h &EE.

typedef u32 hal clk id t;
typedef hal clk id t hal clk t;

£ f133 ZEMFa, HE—1EWE, BAREFRIMIES, EXAILIE platform_ccmu.h &
5]

struct clk
{
struct clk/core *core;
const char *name;
}i
typedef struct clk *hal_clk t;

2.5.2 BIEhRE RS
PABAMARET clk HXE, WF V459 ZHMT AR F133 2ENTE, BRBEMNE
MEFFE, FEAHERNEY.

£ V459 ZHINF S, ZEELEMIHARNZR#E fixed-clock i£E periph-clock Z RIEI#H,
HE XA LTE sunxi/platform clk.h #3%E|

typedef enum

{
HAL CLK_ROOT = -1,
HAL CLK_FIXED SRC,
HAL CLK FIXED FACTOR,
HAL CLK FACTOR,
HAL CLK PERIPH,

} hal clk type t;

WRAFRE © BseEREROERAE. RE—TNF 5

(EgLMmWER
KRER: W

7 F133 Z/GWF A, ZEIELEMIRENE cpux X2 cpus HAIBTFh, HENXAILITE plat-
form_ccmu.h $#3:

typedef enum
{
HAL SUNXI FIXED CCU = 0,
HAL SUNXI RTC CCU,
HAL SUNXI CCU,
HAL SUNXI R CCU,
HAL SUNXI CCU NUMBER,
} hal clk type t;

2.5.3 BHFS

BILAYY hal clk id t BURLEAMEE, XF V459 ZRIMNTEM F133 ZEMTE, XEEXEFM
RE, TELHBXIE .

£ V459 ZHINF A&, FIBLEME XA LE sunxi/platform clk.h 33, FELEHE D E Xo

enum
{
HAL CLK UNINITIALIZED = -1,
HAL CLK SRC ROOT,
/*
* FIXED SOURCE .CLOCK 0~255
*/
HAL CLK SRC_HOSC24M = HAL CLK FIXED SRC OFFSET,
HAL CLK SRC/HOSC24MD2,
HAL CLK SRC I0SC16M,
HAL CLK SRC_0SC48M,
HAL_CLK_SRC_0SC48MD4,
HAL CLK SRC LOSC,
HAL CLK SRC RC16M,
HAL CLK PLL PERIODIV25M,
/*

¥

£ F133 Z2BMFE, EMEE XA LTE sunxi-ng/ccu-xxx.h 2, a0 f133 B LLTE sunxi-
ng/ccu-sun8iw20.h %, TELHESEX.

#define CLK_0SCI2M 0
#define CLK PLL CPUX 1
#define CLK PLL DDRO 2

#define CLK PLL PERIPHO PARENT 3
#define CLK PLL PERIPHO 2X 4

#define CLK PLL_PERIPHO 5

#define CLK PLL PERIPHO 800M 6
#define CLK PLL PERIPHO DIV3 7
#define CLK PLL VIDEO®O

#define CLK PLL VIDE0O 2X
#define CLK PLL VIDEO® 4X 10
#define CLK PLL_VIDEO1 11
#define CLK PLL VIDEOL 2X 12

O ©

IR © HiB2EREROBIRAR. RE—INF 6

@LW/MIER
KRER: W

#define CLK PLL VIDEO1 4X 13
#define CLK PLL_VE 14

#define CLK PLL_AUDIO® 15
#define CLK PLL AUDIO® 2X 16
#define CLK PLL AUDIOO 4X 17
#define CLK PLL AUDIO1 18

2.5.4 rst &K

BEMERAT - rst NER, BHS rst WAEXEERRBMAX, BEEXM TR

struct reset control {
struct reset control dev *rcdev;
u32 enable count;
hal reset id t id;

};

2.5.5 rst RAEMIR

BERARRTT rst IR, XWF V459 ZRIFIF A FI133 ZENTE, ZEMENENXE
FRAR, TELEHERIEXs

typedef enum {
HAL SUNXI/RESET = 05
HAL SUNXI R RESET,
HAL_SUNXI RESET NUMBER,
} hal reset type t;

2.5.6 rst [F5

BEUREMARRT rst NFS, T rst WHRIBERARA, HE—1M . EANEERTLUE
sunxi-ng/rst-xxx.h & sunxi-ng/rst-xxx-r.h &, I8 V459 ZEIHFETENX, FRLLATLL
FEEMEE. THAHBLSE

#define RST MBUS
#define RST_BUS_DEO
#define RST BUS DI
#define RST_BUS_G2D
#define RST_BUS_CE
#define RST BUS VE
#define RST_BUS_DMA
#define RST_BUS_MSGBOXO 7
#define RST BUS MSGBOX1 8
#define RST_BUS_MSGB0X2 9
#define RST_BUS_SPINLOCK 10
#define RST_BUS_HSTIMER 11
#define RST_BUS_DBG 12

o Ul ks WNREFE O

IR © HiB2EREROBIRAR. RE—INF 7

<‘4Lquwsr
NHEER: W

#define RST BUS PWM 13

#define RST BUS IOMMU 14
#define RST BUS_DRAM 15
#define RST BUS MMCO 16
#define RST BUS MMC1 17

\.V“‘ﬂea

WA © BSEERERHERAE. RE—TF

(EELMHMER

MHER: WE

3.1 #0755k

CCU REMEEZOFIRIT, EAXEEAFESIAN hal_clk.h KX+

hal clk t hal clock get(hal clk type t type, hal clk id t id); //3KREXBY%h

hal clk status_t hal clock put(hal clk type t type, hal clk id t id); //FEmeSHE
hal clk t hal clk get parent(hal _clk t clk); //FREXRESHh

hal clk status_t hal clk_set parent(hal _clk t clk, hal clk_t parent);//BBREH
u32 hal clk get rate(hal clk_t clk); //FKEXESEH$RzR

hal clk status t hal clk set rate(hal clk t clk, u32 rate);//ECERTFIAE

hal clk status t hal clock disable(hal clk_t clk); //%HERSED

hal clk _status_t hal clock enable(hal clk t clk); //ffgerdsh

hal clk status t hal clock is enabled(hal clk t clk); //B#HhEEEEE

AR M EEOWAIRE hal clk t 88, EEHEEA hal clock put BFK

rst TEHBEEROFIRINT, EAXEROFESIA hal rst.h kX, XL MEOE V459

(B#& V459/R328) Z I EATIRIE

iBreset
int hal _reset control put(struct reset control *reset); //Flreset
int hal _reset control deassert(struct’ reset control *reset); //#JFreset

int hal reset control_assert(struct reset control *reset); //%kfEreset

reset

int hal reset control status(struct reset control *reset); //resetBURZE

struct reset control *hal reset controliget(hal reset type t type, hal reset id t id); //®

int hal reset control reset(struct reset control *reset); //EEreset, %ffftreset, HBFEE

FE: L EEOWAEIAA hal reset control get, FEEEA hal reset control put BiK

WRAFRE © BseEREROERAE. RE—TNF

@LWIMIER

XAEER:

EIRMER A LIS % hal/test/ccmu/test ng ccmu.c X, TELA HIFEE:

{

int cmd test ng ccmu(int argc, char **argv)

int i, j;

hal clk type t clk type;

hal clk id t clk id;

hal clk status t clk status;

hal clk t clk, p clk;

u32 old rate, new rate, p rate;

hal_reset_type_t reset_type;
hal reset id t reset id;
struct reset control *reset;
int reset status;

for (i = HAL SUNXI_FIXED CCU; i < HAL SUNXI_CCU NUMBER; i+%)

{

clk _type = i;
for (j =0; J < clk number[i]l; j++)
{

clk id = j;

printf("get clock, type:%d, id:%d\n", clk type, clk id);
clk = hal clock get(clk type, clk id);

clk status = hal clock is enabled(clk);
printf("clock %s status:%s\n", clk->name, clk status? "disabled"

enabled") ;

printf("enable clock %s\n", clk->name);

hal clock enable(clk);

clk.status'= hal clock is enabled(clk);

printf("clock %s status:%s\n", clk->name, clk status? "disabled"
enabled");

if (is_strict clk(clk))
continue;

p_clk = hal clk get parent(clk);
if (p_clk)

printf("clock %s\'s parent is: %s\n", clk->name, p_ clk->name);
else

printf("clock %s is root clk\n", clk->name);

old rate = hal clk get rate(clk);

printf("clockk %s rate: %d\n", clk->name, old rate);
old rate /= 2;

printf("clock %s set rate: %d\n", clk->name, old rate);
hal clk set rate(clk, old rate);

new rate = hal clk get rate(clk);

printf("clock %s get rate: %d\n", clk->name, new rate);

IR © HiB2EREROBIRAR. RE—INF

10

@ LWIWER
g MXHEER: WE

//printf("disable clock %s\n", clk->name);

//hal_clock disable(clk);

//clk _status = hal clock is enabled(clk);

//printf("clock %s status:%s\n", clk->name, clk status? "disabled"

enabled");
hal_clock put(p_clk); #FE, ZE#5Shal clock getxd
hal clock put(clk);
}
}
for (i = HAL _SUNXI RESET; i < HAL SUNXI RESET NUMBER; i++)
{
reset type = 1i;
for (j = 0; j < reset number[i]; j++)
{
reset id = j;
printf("reset: get reset control, type:%d, id: %d\n", reset type, reset id)
reset = hal reset control get(reset type, reset id);
#printf("reset: control assert\n");
#hal reset control assert(reset);
printf("reset: control deassert\n");
hal reset control deassert(reset);
reset status = hal reset control. status(reset);
printf("reset status: %s'"; reset status ? "assert" : "deassert");
printf("reset: put reset control, type:%d, id: %d\n", reset type, reset id)
hal reset control put(reset);
}
}
return 0;

4.1 FAQ

AR, V459 5 F133 RMABEERA CCU #MO, X3IETFiItHIR RST MIXEEXIR ID E
X, XRERFETFEHIEHFRE X

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 11

@LWIMIER
g MXHEER: WE

E{E =R

WRAXFAE © 2021 HKiEEERHRHDBRATE. RE—TIF,

AN RNBEREERUERP, HEENEKELTRERRGERAT (“2F) HEHRZ
_t)J*y*lJo

AR E2SHREFRMRRIM =, RELTFEITFA, FARUMTAFFEEHL. £
fil. B ARVEBRAIEABTHBIHEE, BERSFUEMAPHERE,

(ot

LLWINER LLWINER LLWIMWER'
C 2*?4&\2".:\ *‘I’ *i C (=275

é)ﬂhﬁﬁéuﬂ&kﬁﬁm VBB EEMER. EAEERNTmPHRNEERS
*T’ Fﬂﬂ%ﬂ: ﬂ]ﬂ[ﬁﬁz%ﬂ'\, igﬁﬂﬁ%@ﬁﬁﬁkﬁﬁo

REFNA

BHEO~m. RSFFENZRESHKEEEREROEBRAE (EE") 2EEENHIE
EFMFREILIR AXEPEARN2EHER D ™~ m. RS AFEAIRER A EFr LS fEBEERE
N EARIBIARRIRERFMMAERRA, HREREAXENERNR, ERBTREEH
FAYERITH (BEERRFINEE, 8, BRER) EMNAFER, £EMFARE,

ZISSU‘%H’E?JT@%?“ RESE BT mREARLEMRE, FAXEABTEREEN, 88X
B, BAFTEN. 2EREDNELAXEPREFEHNER, EHFTHERBTT2REHEIR, H
ﬁmzﬁﬁlﬁﬁﬁ?ﬁi#ﬁ% (BEEAFRTEHER. BN, BHHHRK) IRERILE=ZANNE
t, @EHAAT. AEPHFRERFRR. 58 MBINHF AR EARREERERIES &S,

AR UABRRE R R E B th 75 TR T 2 EERET AR~ N BRI R ER ™ mY
HiEd, AIRERERTE =ZFIINFFF BEBTRASEZANFANRBEXNIFA, TR
BUARRAZMAERRTREEZ S AR RZEMRR (TR . 2EFWEMRERNE=
BIFARAMEERRIE. BEFEERMX S,

WRINFE © HRB2ERRRNERAR. RE—IF 12

	前言
	文档简介
	目标读者
	适用范围

	模块介绍
	模块功能介绍
	相关术语介绍
	模块配置介绍
	设备树配置
	platform配置

	模块源码结构
	模块数据结构
	时钟数据结构
	时钟类型数据结构
	时钟序号
	rst结构体
	rst类型结构体
	rst序号

	模块接口说明
	接口列表

	模块使用范例
	FAQ

