
RTOS CSI
开发指南

版本号: 1.0
发布日期: 2020-10-22

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
0.1 2019.09.06 SWC 1. 初版
1.0 2020.08.27 AWA0916 1. 适配 RTOS 2. 支持 sysconfig

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 前言 1
1.1 文档简介 . 1
1.2 目标读者 . 1
1.3 适用范围 . 1

2 模块介绍 2
2.1 模块功能介绍 . 2
2.2 相关术语介绍 . 2
2.3 模块配置介绍 . 2

2.3.1 menuconfig 选项配置 . 2
2.3.2 VIN 模块配置 . 3

2.3.2.1 模块寄存器、中断号、个数以及 GPIO 配置 3
2.3.2.2 csic top clk 与 isp clk . 6
2.3.2.3 csic master clk 与 pin . 7
2.3.2.4 sunxi_vinc 配置 . 7
2.3.2.5 sensor 配置 . 10

2.4 源码结构介绍 . 13

3 Sensor 驱动开发 14
3.1 SENSOR_NAME . 14
3.2 Register list 填充 . 14
3.3 sensor_win_sizes 填充 . 15
3.4 sensor_formats 填充 . 15
3.5 sensor 接口实现 . 16
3.6 sensor 测试 . 16

4 接口描述 18
4.1 VIDIOC_QUERYCAP . 19
4.2 VIDIOC_ENUM_INPUT . 19
4.3 VIDIOC_S_INPUT . 20
4.4 VIDIOC_G_INPUT . 20
4.5 VIDIOC_S_PARM . 20
4.6 VIDIOC_G_PARM . 21
4.7 VIDIOC_ENUM_FMT . 22
4.8 VIDIOC_TRY_FMT . 22
4.9 VIDIOC_S_FMT . 23
4.10 VIDIOC_G_FMT . 24
4.11 VIDIOC_OVERLAY . 24
4.12 VIDIOC_REQBUFS . 24
4.13 VIDIOC_QUERYBUF . 25
4.14 VIDIOC_DQBUF . 26
4.15 VIDIOC_QBUF . 26

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

4.16 VIDIOC_STREAMON . 27
4.17 VIDIOC_STREAMOFF . 27
4.18 VIDIOC_QUERYCTRL . 27
4.19 VIDIOC_S_CTRL . 28
4.20 VIDIOC_G_CTRL . 28
4.21 VIDIOC_ENUM_FRAMESIZES . 29
4.22 VIDIOC_ENUM_FRAMEINTERVALS . 30

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

1 前言

1.1 文档简介
CSI 模块在 RTOS 平台上的驱动为 SUNXI-VIN，本文将介绍 VIN（Video Input）驱动的设计
结构、流程、API 接口。主要包含接口部分（CSI/MIPI）和算法处理部分（ISP/VIPP）部分。

1.2 目标读者
硬件底层设计人员，驱动编写、维护人员，应用开发人员。

1.3 适用范围
表 1-1: 适用产品列表

产品名称 内核版本 驱动文件
V833 Melis ekernel/subsys/…/sunxi-vin/*

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 模块介绍

2.1 模块功能介绍
Video Input 主要由接口部分（CSI/MIPI）和图像处理单元（ISP/VIPP）组成。

CSI/MIPI 部分主要实现视频数据的捕捉。

ISP 实现 sensor raw data 数据的处理，包括 lens 补偿、去坏点、gain、gamma、de-
mosic、de-noise、color matrix 等以及一些 3A 的统计。

VIPP能对将图进行缩小、和打水印处理。VIPP支持 bayer raw data经过 ISP处理后再缩小，
也支持对一般的 YUV 格式的 sensor 图像直接缩小。

说明
对于 V833 来说，其 CSIC IP 包括 2 个 Input Parser，1 个 ISP，4 个 VIPP，4 个 DMA。

2.2 相关术语介绍
• ISP: Image Signal Processor
• VIPP: Video Input Post Processor
• MIPI: Mobile Industry Processor Interface
• CCI: camera control interface
• MCLK: Master clock (From AP to camera)
• PCLK: Pixel clock (From camera to AP, Sampling clock for data-bus)
• YUV: Color presentation (Y for luminance, U&V for chrominance)
• CSIC: CMOS Sensor Interface Controller(sunxi image/video input control module)

2.3 模块配置介绍

2.3.1 menuconfig 选项配置

VIN驱动会使用到了 ccmu、gpio、twi、regulator驱动，以及media controller框架等，其
menuconfig 的配置如下：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

Kernel Setup --->
Subsystem support --->
avframework --->
[*] Multimedia support --->
[*] Cameras/video grabbers support
[*] Media Controller API
[*] Video4Linux support
[*] V4L2 sub-device userspace API
[*] Enable the V4L2 core and API
[*] V4L platform devices --->
[*] sunxi video input (camera csi/mipi isp vipp)driver
[*] v4l2 new driver for SUNXI

select sensor (use sensor imx386) --->
[*] ISP WDR module

其中 select sensor 选项请配置为对应的 sensor。

2.3.2 VIN 模块配置

VIN 中各个子模块以及 sensor 在sun8iw19p1_vin_cfg.h以及vin_config_sun8iw19p1_real.h文件中进行
配置。

! 警告
如果开启了 CONFIG_FEXCONFIG，需要在 sys_config.fex 文件对 VIN 模块进行配置。sys_config
路径如下：
source/projects/defconfig/{PLATFORM}/aw_{PLATFORM}/sys_config.fex

下面以 V833 为例对主要配置进行说明。

2.3.2.1 模块寄存器、中断号、个数以及 GPIO 配置

V833 CSIC 模块寄存器、中断号与个数如下，需要根据 datasheet 来进行配置。

#define CSI_CCU_REGS_BASE 0x06600000
#define CSI_TOP_REGS_BASE 0x06600800

#define CSI0_REGS_BASE 0x06601000
#define CSI1_REGS_BASE 0x06602000

#define MIPI_REGS_BASE 0x0660C000

#define ISP_REGS_BASE 0x02100000

#define VIPP0_REGS_BASE 0x02104000

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

#define VIPP1_REGS_BASE 0x02104400
#define VIPP2_REGS_BASE 0x02104800
#define VIPP3_REGS_BASE 0x02104c00

#define CSI_DMA0_REG_BASE 0x06609000
#define CSI_DMA1_REG_BASE 0x06609200
#define CSI_DMA2_REG_BASE 0x06609400
#define CSI_DMA3_REG_BASE 0x06609600

#define GPIO_REGS_VBASE 0x0300b000

#define SUNXI_GIC_START 32
#define SUNXI_IRQ_CSIC_DMA0 (SUNXI_GIC_START + 74)
#define SUNXI_IRQ_CSIC_DMA1 (SUNXI_GIC_START + 75)
#define SUNXI_IRQ_CSIC_DMA2 (SUNXI_GIC_START + 76)
#define SUNXI_IRQ_CSIC_DMA3 (SUNXI_GIC_START + 77)
#define SUNXI_IRQ_ISP0 (SUNXI_GIC_START + 33)
#define SUNXI_IRQ_CSI_TOP_PKT (SUNXI_GIC_START + 92)

#define VIN_MAX_DEV 4
#define VIN_MAX_CSI 2
#define VIN_MAX_CCI 2
#define VIN_MAX_TDM 0
#define VIN_MAX_MIPI 1
#define VIN_MAX_ISP 1
#define VIN_MAX_SCALER 4

#define MAX_CH_NUM 4

V833 CSIC 支持一路 serial interface（即 MIPI，csi0）与一路 parallel interface
（csi1）。MIPI 接口 pin 一般是独享不需要配置，parallel interface 的 pin 通常是 gpio，需
要进行配置才能使用，V833 CSIC 模块 parallel interface 的 pin 配置如下。

/*
"csi1_pck", "csi1_hsync", "csi1_vsync",
"csi1_d0", "csi1_d1", "csi1_d2", "csi1_d3",
"csi1_d4", "csi1_d5", "csi1_d6", "csi1_d7",
"csi1_d8", "csi1_d9", "csi1_d10", "csi1_d11",
"csi1_d12", "csi1_d13", "csi1_d14", "csi1_d15";

*/
int vind_csi_parallel_pins[VIN_MAX_CSI][19] = {
#ifdef CONFIG_FEXCONFIG

GPIO_INDEX_INVALID
#else

{
GPIO_INDEX_INVALID

},
{

GPIOE(0),
GPIOE(2),
GPIOE(3),
GPIOE(4),
GPIOE(5),
GPIOE(6),
GPIOE(7),
GPIOE(8),

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

GPIOE(9),
GPIOE(10),
GPIOE(11),
GPIOE(12),
GPIOE(13),
GPIOE(14),
GPIOE(15),
GPIOE(18),
GPIOE(19),
GPIOE(20),
GPIOE(21)

}
#endif
};

! 警告
如果使用 sys_config.fex，需要加入如下配置。

在定义 CONFIG_FEXCONFIG 的情况下，需要在 sys_config.fex 中配置 parallel interface
相关的 gpio。

[vind0/csi1]
csi1_used = 0
csi1_pck = port:PE00<2><default><default><default>
csi1_hsync = port:PE02<2><default><default><default>
csi1_vsync = port:PE03<2><default><default><default>
csi1_d0 = port:PE04<2><default><default><default>
csi1_d1 = port:PE05<2><default><default><default>
csi1_d2 = port:PE06<2><default><default><default>
csi1_d3 = port:PE07<2><default><default><default>
csi1_d4 = port:PE08<2><default><default><default>
csi1_d5 = port:PE09<2><default><default><default>
csi1_d6 = port:PE10<2><default><default><default>
csi1_d7 = port:PE11<2><default><default><default>
csi1_d8 = port:PE12<2><default><default><default>
csi1_d9 = port:PE13<2><default><default><default>
csi1_d10 = port:PE14<2><default><default><default>
csi1_d11 = port:PE15<2><default><default><default>
csi1_d12 = port:PE18<2><default><default><default>
csi1_d13 = port:PE19<2><default><default><default>
csi1_d14 = port:PE20<2><default><default><default>
csi1_d15 = port:PE21<2><default><default><default>

sys_config 配置说明：

• csi(x)_used: 使能开关，0-disable，1-enable。该字段暂未生效。
• 其他 gpio 需要基于 datasheet 来进行配置。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

2.3.2.2 csic top clk 与 isp clk

这部分涉及 vin top clk 与 isp clk 的相关配置。需要改动的主要是这两个时钟的频率，其他配置
通常不需要修改。

struct vin_clk_info vind_default_clk[VIN_MAX_CLK] = {
[VIN_TOP_CLK] = {

.clock = HAL_CLK_PERIPH_CSI_TOP,
#ifndef CONFIG_FEXCONFIG
#if defined CONFIG_VIN_SENSOR_imx386

.frequency = 336000000,
#elif defined CONFIG_VIN_SENSOR_C2398

.frequency = 300000000,
#endif
#endif

},
[VIN_TOP_CLK_SRC] = {

.clock = HAL_CLK_PLL_CSI,
},

};

struct vin_clk_info vind_default_isp_clk[VIN_ISP_MAX_CLK] = {
[VIN_ISP_CLK] = {

.clock = HAL_CLK_PERIPH_ISP,
#ifndef CONFIG_FEXCONFIG

.frequency = 300000000,
#endif

},
[VIN_ISP_CLK_SRC] = {

.clock = HAL_CLK_PLL_PERI1,
},

};

结构体成员说明：

• csic top clk frequency: vin 模块时钟, 实际使用可根据 sensor 的帧率和分辨率设置。
• isp clk frequency: isp 时钟频率。

! 警告
如果使用 sys_config.fex，需要加入如下配置。

在定义 CONFIG_FEXCONFIG 的情况下，需要在 sys_config.fex 中配置 top clk 与 isp clk
的频率。

[vind0]
vind0_used = 1
vind0_clk = 336000000
vind0_isp = 300000000

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

2.3.2.3 csic master clk 与 pin

这部分涉及到 master clk 与 pin 的配置，通常不需要改动。

struct vin_mclk_info vind_default_mclk[VIN_MAX_CCI] = {
{

.mclk = HAL_CLK_PERIPH_CSI_MASTER0,
#if defined CONFIG_CSI_PLL_CLK_SPREAD_SPECTRUM

.clk_24m = HAL_CLK_PLL_CSI,
#else

.clk_24m = HAL_CLK_SRC_HOSC24M,
#endif

.clk_pll = HAL_CLK_PLL_CSI,

.pin = {
[0] = {0, GPIOI(0), 2, 0, 2},
[1] = {0, GPIOI(0), 7, 0, 2},

},
},
{

.mclk = HAL_CLK_PERIPH_CSI_MASTER1,
#if defined CONFIG_CSI_PLL_CLK_SPREAD_SPECTRUM

.clk_24m = HAL_CLK_PLL_CSI,
#else

.clk_24m = HAL_CLK_SRC_HOSC24M,
#endif

.clk_pll = HAL_CLK_PLL_CSI,

.pin = {
[0] = {0, GPIOE(1), 2, 0, 2},
[1] = {0, GPIOE(1), 7, 0, 2},

},
},

};

2.3.2.4 sunxi_vinc 配置

用于 video 节点的注册和配置各个子模块的使用情况。需要填充如下结构体。

struct vin_core sunxi_vinc[VIN_MAX_DEV] = {
#ifdef CONFIG_FEXCONFIG

0
#else

[0] = {
.id = 0,
.rear_sensor = 0,
.front_sensor = 0,
.csi_sel = 0,
.mipi_sel = 0,
.isp_sel = 0,

},
[1] = {

.id = 1,

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

.rear_sensor = 0,

.front_sensor = 0,

.csi_sel = 0,

.mipi_sel = 0,

.isp_sel = 0,
},
[2] = {

.id = 2,

.rear_sensor = 0,

.front_sensor = 0,

.csi_sel = 0,

.mipi_sel = 0,

.isp_sel = 0,
},
[3] = {

.id = 3,

.rear_sensor = 0,

.front_sensor = 0,

.csi_sel = 0,

.mipi_sel = 0,

.isp_sel = 0,
}

#endif /*CONFIG_FEXCONFIG*/
};

相关结构体成员说明：

• id: index 号。
• rear_sensor: 表示该 pipeline 上使用的后置 sensor 的 id。
• front_sensor: 表示该 pipeline 上使用的前置 sensor 的 id。
• csi_sel: 表示该 pipeline 上 parser 的 id，必须配置，且为有效 id。
• mipi_sel: 表示该 pipeline 上 mipi(sublvds/hispi) 的 id，不使用时配置为 0xff。
• isp_sel: 表示该 pipeline 上 isp 的 id，必须配置，当 isp 为空时，这个 isp 只是表示路由不
做 isp 的效果处理。

! 警告
如果使用 sys_config.fex，需要加入如下配置。

在定义CONFIG_FEXCONFIG的情况下，上述结构体的内容为空，全部需要在 sys_config.fex
中进行配置。

[vind0/vinc0]
vinc0_used = 1
vinc0_csi_sel = 0
vinc0_mipi_sel = 0
vinc0_isp_sel = 0
vinc0_isp_tx_ch = 0
vinc0_rear_sensor_sel = 0
vinc0_front_sensor_sel = 0
vinc0_sensor_list = 0

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

[vind0/vinc1]
vinc1_used = 0
vinc1_csi_sel = 0
vinc1_mipi_sel = 0xff
vinc1_isp_sel = 0
vinc1_isp_tx_ch = 0
vinc1_rear_sensor_sel = 0
vinc1_front_sensor_sel = 0
vinc1_sensor_list = 0

[vind0/vinc2]
vinc2_used = 0
vinc2_csi_sel = 0
vinc2_mipi_sel = 0
vinc2_isp_sel = 0
vinc2_isp_tx_ch = 0
vinc2_rear_sensor_sel = 0
vinc2_front_sensor_sel = 0
vinc2_sensor_list = 0

[vind0/vinc3]
vinc3_used = 0
vinc3_csi_sel = 0
vinc3_mipi_sel = 0
vinc3_isp_sel = 0
vinc3_isp_tx_ch = 0
vinc3_rear_sensor_sel = 0
vinc3_front_sensor_sel = 0
vinc3_sensor_list = 0

sys_config 配置说明如下：

• vinc(x)_used: vipp 的使能开关，0-disable，1-enable。该字段暂未生效。
• vinc(x)_csi_sel: 表示该 pipeline 上 parser 的 id，必须配置，且为有效 id。同上述 vin_core
结构体中的 csi_sel 成员。

• vinc(x)_mipi_sel: 表示该 pipeline上 mipi(sublvds/hispi)的 id，不使用时配置为 0xff。同上
述 vin_core 结构体中的 mipi_sel 成员。

• vinc(x)_isp_sel: 表示该 pipeline 上 isp 的 id，必须配置，当 isp 为空时，这个 isp 只是表示
路由不做 isp 的效果处理。同上述 vin_core 结构体中的 isp_sel 成员。

• vinc(x)_isp_tx_ch: 表示该 pipeline 上 isp 的 ch，必须配置，默认为 0。当 sensor 是 bt656
多通道或者 WDR 出 RAW 时，该 ch 可以配置 0~3 的值。同上述 vin_core 结构体中的
isp_tx_ch 成员。

• vinc(x)_rear_sensor_sel: 表示该 pipeline 上使用的后置 sensor 的 id。同上述 vin_core 结构
体中的 rear_sensor 成员。

• vinc(x)_front_sensor_sel: 表示该 pipeline 上使用的前置 sensor 的 id。同上述 vin_core 结构
体中的 front_sensor 成员。

• vinc(x)_sensor_list: 表示是否使用 sensor_list 来时适配不同的模组，1 表示使用，0 表示不使
用。同 sensor_list 结构体中的 use_sensor_list 成员。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

2.3.2.5 sensor 配置

对 sensor 进行配置。这些节点的配置一般需要参考对应方案的原理图和 sensor 的 data sheet
来完成。需要填充如下结构体。

struct sensor_list sensors_default[VIN_MAX_DEV] = {
#ifdef CONFIG_FEXCONFIG

{
.power =
{

[IOVDD] = {NULL, AXP2101_ID_ALDO2, 0, "iovdd"},
[AVDD] = {NULL, AXP2101_ID_BLDO2, 0, "avdd"},
[DVDD] = {NULL, AXP2101_ID_DLDO2, 0, "dvdd"},
[AFVDD] = {NULL, AXP2101_ID_MAX, 0, ""},
[FLVDD] = {NULL, AXP2101_ID_MAX, 0, ""},
[CAMERAVDD] = {NULL, AXP2101_ID_MAX, 0, ""},

},
},

#else
{
.use_sensor_list = 0,
.used = 0,
.csi_sel = 0,
.device_sel = 0,
.mclk_id = 0,
.sensor_bus_sel = 1,
.sensor_bus_type = 0,
.act_bus_sel = 0,
.act_bus_type = 0,
.act_separate = 0,
.power_set = 0,
.detect_num = 1,
.sensor_pos = "rear",
.valid_idx = 0,
.power = {

[IOVDD] = {NULL, AXP2101_ID_ALDO2, 1800000, "iovdd"},
[AVDD] = {NULL, AXP2101_ID_BLDO2, 2800000, "avdd"},
[DVDD] = {NULL, AXP2101_ID_DLDO2, 1200000, "dvdd"},
[AFVDD] = {NULL, AXP2101_ID_MAX, 0, ""},
[FLVDD] = {NULL, AXP2101_ID_MAX, 0, ""},
[CAMERAVDD] = {NULL, AXP2101_ID_MAX, 0, ""},
},

.gpio = {
[POWER_EN] = {0, GPIO_INDEX_INVALID, 0, 0, 0},
[PWDN] = {0, GPIOI(4), 1, 0, 1},
[RESET] = {0, GPIOI(3), 1, 0, 1},
[SM_HS] = {0, GPIO_INDEX_INVALID, 0, 0, 0},
[SM_VS] = {0, GPIO_INDEX_INVALID, 0, 0, 0},
[AF_PWDN] = {0, GPIO_INDEX_INVALID, 0, 0, 0},
[FLASH_EN] = {0, GPIO_INDEX_INVALID, 0, 0, 0},
[FLASH_MODE] = {0, GPIO_INDEX_INVALID, 0, 0, 0},
},

.inst = {
#if defined CONFIG_VIN_SENSOR_imx386

[0] = {
.cam_name = "imx386_mipi",

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

.cam_addr = 0x20,

.cam_type = 1,

.is_isp_used = 1,

.is_bayer_raw = 1,

.vflip = 0,

.hflip = 0,

.act_addr = 0x0,

.act_name = "",

.isp_cfg_name = "",
},

},
#elif defined CONFIG_VIN_SENSOR_C2398

[0] = {
.cam_name = "C2398_mipi",
.cam_addr = 0x6c,
.cam_type = 1,
.is_isp_used = 1,
.is_bayer_raw = 1,
.vflip = 0,
.hflip = 0,
.act_addr = 0x0,
.act_name = "",
.isp_cfg_name = "",
},

},
#endif

},
#endif /*CONFIG_FEXCONFIG*/
};

相关结构体成员说明：

• use_sensor_list: 表示是否使用 sensor_list 来时适配不同的模组,1 表示使用,0 表示不使用。
• used: 该字段暂未使用。
• csi_sel: 表示该 pipeline 上 parser 的 id，必须配置，且为有效 id。
• device_sel: 该字段暂未使用。
• mclk_id: sensor 所使用的 mclk 的 id。
• sensor_bus_sel: sensor 所使用的 bus 的 id。
• sensor_bus_type: 表示 sensor 所使用的 bus 类型（0 - twi/i2c，1 - cci，2 - spi，3 -
gpio）。

• act_bus_sel: actuator 所使用的 bus 的 id。
• act_bus_type: actuator 所使用的 bus 类型（twi, cci, spi 或 gpio）。
• act_separate: 该字段暂未使用。
• power_set: 该字段暂未使用。
• detect_num: sensor 的个数。
• sensor_pos: sensor 的位置, 前置还是后置。
• valid_idx: 可用的 sensor id，与 inst 数组配合。
• power: 电源配置。需要参考对应方案的原理图和外设的 data sheet 来完成。
• gpio: gpio 配置。需要参考对应方案的原理图和外设的 data sheet 来完成。
• inst: 具体的 sensor 实例。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

• cam_name: sensor 的名字。
• cam_addr: sensor 的 twi 地址。
• cam_type: sensor 的类型。0 - YUV; 1 - RAW。
• is_isp_used: 是否使用 ISP。0 - 不使用；1 - 使用。
• is_bayer_raw: 是否是 bayer raw。0 - 不是；1 - 是。
• vflip: flip in vertical direction. 0 - disable; 1 - enable。
• hflip: flip in horizontal direction. 0 - disable; 1 - enable。
• act_addr: actuator 的 twi 地址。
• act_name: actuator 的名字。
• isp_cfg_name: 该字段暂未使用。

! 警告
如果使用 sys_config.fex，需要加入如下配置。

在定义 CONFIG_FEXCONFIG 的情况下，上述配置内容全部为空，需要在 sys_config.fex 中
进行配置。

[vind0/sensor0]
sensor0_used = 1
sensor0_mname = "imx386_mipi"
sensor0_twi_cci_spi = 0
sensor0_twi_cci_id = 1
sensor0_twi_addr = 0x20
sensor0_cam_type = 1
sensor0_mclk_id = 0
sensor0_pos = "rear"
sensor0_isp_used = 1
sensor0_fmt = 1
sensor0_vflip = 0
sensor0_hflip = 0
sensor0_iovdd_vol = 1800000
sensor0_avdd_vol = 2800000
sensor0_dvdd_vol = 1200000
sensor0_power_en =
sensor0_pwdn = port:PI04<1><0><1><0>
sensor0_reset = port:PI03<1><0><1><0>

sys_config 配置说明如下：

• sensor(x)_used: 0 - disable，1 - enable。该字段暂未生效。
• sensor(x)_mname: 表示 sensor 的名字。同上述 sensor_list 结构体下的 cam_name 成员。
• sensor(x)_twi_cci_spi: 表示 sensor 所使用的 bus 类型（0 - twi/i2c，1 - cci，2 - spi，3 -
gpio）。同上述 sensor_list 结构体中的 sensor_bus_type 成员。

• sensor(x)_twi_cci_id: sensor 所使用的 bus 的 id。同上述 sensor_list 结构体中的 sen-
sor_bus_sel 成员。

• sensor(x)_twi_addr: sensor 的 twi 地址。同上述 sensor_list 结构体下的 cam_addr 成员。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

• sensor(x)_cam_type: sensor 的类型。0 - YUV; 1 - RAW。同上述 sensor_list 结构体下的
cam_type 成员。

• sensor(x)_mclk_id: sensor 所使用的 mclk 的 id。同上述 sensor_list 结构体中的 mclk_id 成
员。

• sensor(x)_pos: sensor 的位置，前置还是后置。同上述 sensor_list 结构体中的 sensor_pos
成员。

• sensor(x)_isp_used: 是否使用 ISP。0 - 不使用；1 - 使用。同上述 sensor_list 结构体下的
is_isp_used 成员。

• sensor(x)_fmt: 是否是 bayer raw。0 - 不是；1 - 是。同上述 sensor_list 结构体下的
is_bayer_raw 成员。

• sensor(x)_vflip: flip in vertical direction. 0 - disable; 1 - enable。同上述 sensor_list 结
构体下的 vflip 成员。

• sensor(x)_hflip: flip in horizontal direction. 0 - disable; 1 - enable。同上述 sensor_list
结构体下的 hflip 成员。

• sensor(x)_iovdd_vol: camera 模组的 io power voltage。
• sensor(x)_avdd_vol: camera 模组的 analog power voltage。
• sensor(x)_dvdd_vol: camera 模组的 core power voltage。
• sensor(x)_power_en: camera 模组的 power enable gpio。
• sensor(x)_pwdn: camera 模组的 power pwdn gpio。
• sensor(x)_reset: camera 模组的 power reset gpio。

2.4 源码结构介绍
驱动位于 source/ekernel/subsys/avframework/v4l2/drivers/media/platform/sunxi-vin。

sunxi-vin/
├── modules
│ ├── sensor
│ │ ├── C2398_mipi.c ;具体的sensor驱动
│ │ ├── camera_cfg.h ;camera ioctl扩展命令头文件
│ │ ├── camera.h ;camera公用结构体头文件
│ │ ├── imx386_mipi.c ;具体的sensor驱动
│ │ ├── Makefile
│ │ ├── sensor_helper.c ;sensor公用操作接口函数文件
│ │ └── sensor_helper.h ;sensor公用操作接口函数头文件
├── platform
│ ├── platform_cfg.h ;平台相关的配置接口
│ └── sun8iw19p1_vin_cfg.h ;具体的平台配置头文件
├── utility
│ ├── vin_config_sun8iw19p1.h ;csi以及sensor配置结构体
│ ├── vin_config_sun8iw19p1_real.h ;真实csi以及sensor的配置信息

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

3 Sensor 驱动开发

可以在 Melis/source/ekernel/subsys/avframework/v4l2/drivers/media/platform/sunxi-
vin/modules/sensor 目录下拷贝一份 sensor 驱动，通过修改内容来进行新 sensor 驱动开
发。

! 警告
当前 Melis V833 支持 MIPI 接口的 sensor、并口 YUV/RAW sensor 以及 BT656/BT1120 接口的
sensor。
由于 V833 CSIC 无 CCI，当前 Melis CSI 驱动不支持 CCI 方式的 bus 来与 sensor 通信。

3.1 SENSOR_NAME

首先，将驱动中的 SENSOR_NAME 宏修改为对应的 sensor 名称，不要与现有驱动重名。如:

#define SENSOR_NAME "imx386_mipi"

其次，修改 sensor 的地址宽度和数据宽度，如地址宽度为 16bit，数据宽度为 8bit 则:

static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,

};

3.2 Register list 填充
每一个寄存器表配置 sensor 一种帧率和分辨率的输出。如：

static struct regval_list sensor_4k30_regs[] = {
{0x0100, 0x00},
{0xFFFF, 0x01},
{0x0112, 0x0A},
......

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

}

3.3 sensor_win_sizes 填充
每一个窗口对应一种帧率和分辨率，对应一组 register list。

static struct sensor_win_size sensor_win_sizes[] = {
......
{
.width = 4032,
.height = 2256,
.hoffset = 0,
.voffset = 0,
.hts = 4296,
.vts = 2326,
.pclk = 300*1000*1000,
.mipi_bps = 800*1000*1000,
.fps_fixed = 30,
.bin_factor = 1,
.intg_min = 16,
.intg_max = (2326-4)<<4,
.gain_min = 16,
.gain_max = (128<<4),
.regs = sensor_4k30_regs,
.regs_size = ARRAY_SIZE(sensor_4k30_regs),
.set_size = NULL,
.top_clk = 336*1000*1000,
.isp_clk = 326*1000*1000,
#ifdef CONFIG_SENSOR_CROP
.vipp_hoff = VIDEO_OFFSET_H,
.vipp_voff = VIDEO_OFFSET_V,
#endif
},
......

}

3.4 sensor_formats 填充
主要是配置 mbus_code，如 RG10 应该配置成：

static struct sensor_format_struct sensor_formats[] = {
{

.desc = "Raw RGB Bayer",

.mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10,

.regs = sensor_fmt_raw,

.regs_size = ARRAY_SIZE(sensor_fmt_raw),

.bpp = 1

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

},
};

3.5 sensor 接口实现
主要需要实现如下接口：

static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val);
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val);
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain);
static int sensor_power(struct v4l2_subdev *sd, int on);
static int sensor_detect(struct v4l2_subdev *sd);
static int sensor_init(struct v4l2_subdev *sd, u32 val)
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg);

其中

• sensor_power 要根据 sensor datasheet 中的上电时序来配置。
• sensor_detect 用于检测 IIC 是否正常读写。
• sensor_init 初始化 sensor。
• sensor_ioctl 设置以及获取 sensor 的信息。
• sensor_s_exp、sensor_s_gain、sensor_s_exp_gain 用于 sensor 的曝光和增益控制，isp
的 AE 会调用这些接口。

• sensor_g_mbus_config 用于告知 paser/mipi 该 sensor 的接口属性。如 mipi 4lane 单通
道的 mbus_config 如下:

static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)

{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0 | V4L2_MBUS_CSI2_4_LANE | V4L2_MBUS_CSI2_CHANNEL_0;

return 0;
}

3.6 sensor 测试
Melis 上提供一些测试程序，为 camera sensor 的测试提供参考。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

测试程序位于 source/ekernel/subsys/avframework/v4l2/drivers/media/platform/sunxi-
vin/vin_test/mplane_image 目录下，它调用 V4L2 ioctl API，主要实现 camera 视频格式、
大小等的设置，以及怎样获取 frame buffer 和释放。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

4 接口描述

VIN 驱动基于 V4L2 框架实现，对应用层提供/dev/videoX 与/dev/mediaX 节点。通
过/dev/videoX 节点进行相应视频流和控制操作；通过/dev/mediaX 节点应用可以获取媒
体设备拓扑结构，并能够通过 API 控制子设备间数据流向。应用层使用标准 V4L2 API 接口即
可，主要调用流程如下图所示。

图 4-1: 应用调用流程

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

4.1 VIDIOC_QUERYCAP

Parameters

Capability of csi driver（struct v4l2_capability *capability）

struct v4l2_capability {
__u8 driver[16]; /* i.e. "bttv" */
__u8 card[32]; /* i.e. "Hauppauge WinTV" */
__u8 bus_info[32]; /* "PCI:" + pci_name(pci_dev) */
__u32 version; /* should use KERNEL_VERSION() */
__u32 capabilities; /* Device capabilities */

__u32 device_caps;
__u32 reserved[3];

};

Returns

Success:0; Fail: Failure Number

Description

获取驱动的名称、版本、支持的 capabilities等，如V4L2_CAP_VIDEO_CAPTURE_MPLANE、
V4L2_CAP_STREAMING 等。

4.2 VIDIOC_ENUM_INPUT

Parameters

input（struct v4l2_input *inp）

struct v4l2_input {
__u32 index; /* Which input */
__u8 name[32]; /* Label */
__u32 type; /* Type of input */
__u32 audioset; /* Associated audios (bitfield) */
__u32 tuner; /* Associated tuner */
v4l2_std_id std;
__u32 status;
__u32 capabilities;
__u32 reserved[3];

};

Returns

Success:0; Fail: Failure Number

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

Description

获取驱动支持的 input index。目前驱动只支持 input index = 0 或 index = 1。其中 Index =
0 表示 primary csi device；Index = 1 表示 secondary csi device。

应用输入 index，驱动返回 type。对于VIN设备来说，type为V4L2_INPUT_TYPE_CAMERA。

4.3 VIDIOC_S_INPUT

Parameters

input（struct v4l2_input *inp）

Returns

Success:0; Fail: Failure Number

Description

通过 inp.index设置当前要访问的 csi device为 primary device还是 secondary device。其
中 Index = 0 （双摄像头配置中，一般对应后置双摄像头。若只有一个摄像头设备，则 index 固
定为 0）；Index = 1（双摄像头配置中，一般对应前置摄像头）。

调用该接口后，实际上会对 csi device 进行初始化工作。

4.4 VIDIOC_G_INPUT

Parameters

input（struct v4l2_input *inp）

Returns

Success:0; Fail: Failure Number

Description

获取 inp.index，判断当前设置的 csi device 为 primary device 还是 secondary device。其
中 Index = 0 （双摄像头配置中，一般对应后置双摄像头。若只有一个摄像头设备，则 index 固
定为 0）；Index = 1（双摄像头配置中，一般对应前置摄像头）。

4.5 VIDIOC_S_PARM

Parameters

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

文档密级：秘密

Parameter（struct v4l2_streamparm *parms）

struct v4l2_streamparm {
enum v4l2_buf_type type;
union {

struct v4l2_captureparm capture;
struct v4l2_outputparm output;
__u8 raw_data[200]; /* user-defined */

} parm;
};

struct v4l2_captureparm {
__u32 capability; /* Supported modes */
__u32 capturemode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in .1us units */
__u32 extendedmode; /* Driver-specific extensions */
__u32 readbuffers; /* # of buffers for read */
__u32 reserved[4];

};

Returns

Success:0; Fail: Failure Number

Description

CSI 作为输入设备，只关注 parms.type 和 parms.capture。

应用使用时，parms.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE；

通过设定 parms->capture.capturemode（V4L2_MODE_VIDEO或V4L2_MODE_IMAGE），
实现视频或图片的采集。

通过设定 parms->capture.timeperframe，可以设置帧率。

4.6 VIDIOC_G_PARM

Parameters

Parameter（struct v4l2_streamparm *parms）

Returns

Success:0; Fail: Failure Number

Description

应用使用时，parms.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE；

通过 parms->capture.capturemode，返回当前采集模式 V4L2_MODE_VIDEO 或

版权所有 © 珠海全志科技股份有限公司。保留一切权利 21

文档密级：秘密

V4L2_MODE_IMAGE；

通过 parms->capture.timeperframe，返回当前设置的帧率。

4.7 VIDIOC_ENUM_FMT

Parameters

V4L2 format（struct v4l2_fmtdesc *fmtdesc）

struct v4l2_fmtdesc {
__u32 index; /* Format number */
enum v4l2_buf_type type; /* buffer type */
__u32 flags;
__u8 description[32]; /* Description string */
__u32 pixelformat; /* Format fourcc */
__u32 reserved[4];

};

Returns

Success:0; Fail: Failure Number

Description

获取驱动支持的 V4L2 格式。输入 type、index 参数，返回 pixelformat。

对于 VIN 设备，type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。

4.8 VIDIOC_TRY_FMT

Parameters

Video type, format and size（struct v4l2_format *fmt）

struct v4l2_format {
enum v4l2_buf_type type;
union {

struct v4l2_pix_format pix;
struct v4l2_pix_format_mplane pix_mp;
struct v4l2_window win;
struct v4l2_vbi_format vbi;
struct v4l2_sliced_vbi_format sliced;
__u8 raw_data[200];

} fmt;
};

版权所有 © 珠海全志科技股份有限公司。保留一切权利 22

文档密级：秘密

struct v4l2_pix_format {
__u32 width;
__u32 height;
__u32 pixelformat;
enum v4l2_field field;
__u32 bytesperline; /* for padding, zero if unused */
__u32 sizeimage;
enum v4l2_colorspace colorspace;
__u32 priv; /* private data, depends on pixelformat */

__u32 flags; /* format flags (V4L2_PIX_FMT_FLAG_*) */
__u32 ycbcr_enc; /* enum v4l2_ycbcr_encoding */
__u32 quantization; /* enum v4l2_quantization */
__u32 xfer_func; /* enum v4l2_xfer_func */

};

Returns

Success:0; Fail: Failure Number

Description

根据捕捉视频的类型、格式和大小，判断模式、格式等是否被驱动支持。不会改变任何硬件设
置。

对于 VIN 设备，type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。

使用 struct v4l2_pix_format_mplane 进行参数传递。

应用程序输入 struct v4l2_pix_format_mplane 结构体里面的 width、height、pixelfor-
mat、field 等参数，驱动返回最接近的 width、height；若 pixelformat、field 不支持，则默
认选择驱动支持的第一种格式。

4.9 VIDIOC_S_FMT

Parameters

Video type, format and size（struct v4l2_format *fmt）

Returns

Success:0; Fail: Failure Number

Description

设置捕捉视频的类型、格式和大小，设置之前会调用 VIDIOC_TRY_FMT。

对于 VIN 设备，type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。

使用 struct v4l2_pix_format_mplane 进行参数传递。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 23

文档密级：秘密

应用程序输入 width、height、pixelformat、field 等，驱动返回最接近的 width、height；
若 pixelformat、field 不支持，则默认选择驱动支持的第一种格式。

应用程序应该以驱动返回的 width、height、pixelformat、field 等作为后续使用传递的参数。

对于 OSD设备，type为 V4L2_BUF_TYPE_VIDEO_OVERLAY。使用 struct v4l2_window
进行参数传递。

应用程序输入水印的个数、窗口位置和大小、bitmap 地址、bitmap 格式以及 global_alpha
等。驱动保存这些参数，并在 VIDIOC_OVERLAY 命令传递使能命令时生效。

4.10 VIDIOC_G_FMT

Parameters

Video type, format and size（struct v4l2_format *fmt）

Returns

Success:0; Fail: Failure Number

Description

获取捕捉视频的 width、height、pixelformat、field、bytesperline、sizeimage 等参数。

4.11 VIDIOC_OVERLAY

Parameters

Overlay on/off（unsigned int i）

Returns

Success:0; Fail: Failure Number

Description

传递 1 表示使能，0 表示关闭。设置使能时会更新 osd 参数，使之生效。

4.12 VIDIOC_REQBUFS

Parameters

Buffer type, count and memory map type（struct v4l2_requestbuffers * req）

版权所有 © 珠海全志科技股份有限公司。保留一切权利 24

文档密级：秘密

struct v4l2_requestbuffers {
__u32 count;
enum v4l2_buf_type type;
enum v4l2_memory memory;
__u32 reserved[2];

};

Returns

Success:0; Fail: Failure Number

Description

v4l2_requestbuffers 结构中定义了缓存的数量，驱动会据此申请对应数量的视频缓存。多个缓
存可以用于建立 FIFO，来提高视频采集的效率。这些 buffer 通过内核申请，申请后需要通过
mmap 方法，映射到 User 空间。

Count：定义需要申请的video buffer数量
Type：对于VIN设备，为V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
Memory：目前支持V4L2_MEMORY_MMAP、V4L2_MEMORY_USERPTR、V4L2_MEMORY_DMABUF方式

应用程序传递上述三个参数，驱动会根据 VIDIOC_S_FMT 设置的格式计算供需要 buffer 的大
小，并返回 count 数量。

4.13 VIDIOC_QUERYBUF

Parameters

Buffer type ,index and memory map type（struct v4l2_buffer *buf）

struct v4l2_buffer {
__u32 index;
enum v4l2_buf_type type;
__u32 bytesused;
__u32 flags;
enum v4l2_field field;
struct timeval timestamp;
struct v4l2_timecode timecode;
__u32 sequence;

/* memory location */
enum v4l2_memory memory;
union {

__u32 offset;
unsigned long userptr;
struct v4l2_plane *planes;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 25

文档密级：秘密

__s32 fd;
} m;
__u32 length;
__u32 input;
__u32 reserved;

};

Returns

Success:0; Fail: Failure Number

Description

通过 struct v4l2_buffer 结构体的 index，访问对应序号的 buffer，获取到对应 buffer 的缓存
信息。主要利用 length 信息及 m.offset 信息来完成 mmap 操作。

4.14 VIDIOC_DQBUF

Parameters

Buffer type ,index and memory map type（struct v4l2_buffer *buf）

Returns

Success:0; Fail: Failure Number

Description

将 driver 已经填充好数据的 buffer 出列，供应用使用。

应用程序根据 index 来识别 buffer，此时 m.offset 表示 buffer 对应的物理地址。

4.15 VIDIOC_QBUF

Parameters

Buffer type ,index and memory map type（struct v4l2_buffer *buf）

Returns

Success:0; Fail: Failure Number

Description

将 User 空间已经处理过的 buffer，重新入队，移交给 driver，等待填充数据。

应用程序根据 index 来识别 buffer。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 26

文档密级：秘密

4.16 VIDIOC_STREAMON

Parameters

Buffer type（enum v4l2_buf_type *type）

Returns

Success:0; Fail: Failure Number

Description

此处的 buffer type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。运行此 IOCTL，
将 buffer 队列中所有 buffer 入队，并开启 CSIC DMA 硬件中断，每次中断便表示完成一帧
buffer 数据的填入。

4.17 VIDIOC_STREAMOFF

Parameters

Buffer type（enum v4l2_buf_type *type）

Returns

Success:0; Fail: Failure Number

Description

此处的 buffer type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。运行此 IOCTL，
停止捕捉视频，将 frame buffer 队列清空，以及 video buffer 释放。

4.18 VIDIOC_QUERYCTRL

Parameters

Control id and value（struct v4l2_queryctrl *qc）

struct v4l2_queryctrl {
__u32 id;
enum v4l2_ctrl_type type;
__u8 name[32]; /* Whatever */
__s32 minimum; /* Note signedness */
__s32 maximum;
__s32 step;
__s32 default_value;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 27

文档密级：秘密

__u32 flags;
__u32 reserved[2];

};

Returns

Success:0; Fail: Failure Number

Description

应用程序通过 id 参数，驱动返回需要调节参数的 name，minmum，maximum，de-
fault_value 以及步进 step。（由 v4l2 conctrols framework 完成）

目前可能支持的 id 请参考 VIDIOC_S_CTRL。

4.19 VIDIOC_S_CTRL

Parameters

Control id and value（struct v4l2_queryctrl *qc）

Returns

Success:0; Fail: Failure Number

Description

应用程序通过 id，value 等参数，对 camera 驱动对应的参数进行设置。

驱动内部会先调用 vidioc_queryctrl，判断 id 是否支持，value 是否在 minimum 和 maxi-
mum 之间。（由 v4l2 conctrols framework 完成）

目前可能支持的 id 和 value 参考附件。

4.20 VIDIOC_G_CTRL

Parameters

Control id and value（struct v4l2_queryctrl *qc）

Returns

Success:0; Fail: Failure Number

Description

版权所有 © 珠海全志科技股份有限公司。保留一切权利 28

文档密级：秘密

应用程序通过 id，驱动返回对应 id 当前设置的 value。

4.21 VIDIOC_ENUM_FRAMESIZES

Parameters

index, type, format（struct v4l2_frmsizeenum）

enum v4l2_frmsizetypes {
V4L2_FRMSIZE_TYPE_DISCRETE = 1,
V4L2_FRMSIZE_TYPE_CONTINUOUS = 2,
V4L2_FRMSIZE_TYPE_STEPWISE = 3,

};

struct v4l2_frmsize_discrete {
__u32 width; /* Frame width [pixel] */
__u32 height; /* Frame height [pixel] */

};

struct v4l2_frmsize_stepwise {
__u32 min_width; /* Minimum frame width [pixel] */
__u32 max_width; /* Maximum frame width [pixel] */
__u32 step_width; /* Frame width step size [pixel] */
__u32 min_height; /* Minimum frame height [pixel] */
__u32 max_height; /* Maximum frame height [pixel] */
__u32 step_height; /* Frame height step size [pixel] */

};

struct v4l2_frmsizeenum {
__u32 index; /* Frame size number */
__u32 pixel_format; /* Pixel format */
__u32 type; /* Frame size type the device supports. */

union { /* Frame size */
struct v4l2_frmsize_discrete discrete;
struct v4l2_frmsize_stepwise stepwise;

};

__u32 reserved[2]; /* Reserved space for future use */
};

Returns

Success:0; Fail: Failure Number

Description

根据应用传进来的 index，pixel_format，驱动返回 type，并根据 type填写 discrete或 step-
wise 的值。Discrete 表示分辨率固定的值；stepwise 表示分辨率有最小值和最大值，并根据
step 递增。上层根据返回的 type，做对应不同的操作。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 29

文档密级：秘密

4.22 VIDIOC_ENUM_FRAMEINTERVALS

Parameters

Index，format，size，type（struct v4l2_frmivalenum）

enum v4l2_frmivaltypes {
V4L2_FRMIVAL_TYPE_DISCRETE = 1,
V4L2_FRMIVAL_TYPE_CONTINUOUS = 2,
V4L2_FRMIVAL_TYPE_STEPWISE = 3,

};

struct v4l2_frmival_stepwise {
struct v4l2_fract min; /* Minimum frame interval [s] */
struct v4l2_fract max; /* Maximum frame interval [s] */
struct v4l2_fract step; /* Frame interval step size [s] */

};

struct v4l2_frmivalenum {
__u32 index; /* Frame format index */
__u32 pixel_format; /* Pixel format */
__u32 width; /* Frame width */
__u32 height; /* Frame height */
__u32 type; /* Frame interval type the device supports. */

union { /* Frame interval */
struct v4l2_fract discrete;
struct v4l2_frmival_stepwise stepwise;

};

__u32 reserved[2]; /* Reserved space for future use */
};

Returns

Success:0; Fail: Failure Number

Description

应用程序通过 pixel_format、width、height、驱动返回 v4l2_frmivalenum.type，并根据
v4l2_frmivalenum.type 填写 V4L2_FRMIVAL_TYPE_DISCRETE、CONTINUOUS 或
STEPWISE。Discrete 表示支持单一的帧率；stepwise 表示支持步进的帧率。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 30

文档密级：秘密

著作权声明

版权所有 ©2020 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 31

	前言
	文档简介
	目标读者
	适用范围

	模块介绍
	模块功能介绍
	相关术语介绍
	模块配置介绍
	menuconfig选项配置
	VIN模块配置
	模块寄存器、中断号、个数以及GPIO配置
	csic top clk与isp clk
	csic master clk与pin
	sunxi_vinc配置
	sensor配置

	源码结构介绍

	Sensor驱动开发
	SENSOR_NAME
	Register list填充
	sensor_win_sizes填充
	sensor_formats填充
	sensor 接口实现
	sensor测试

	接口描述
	VIDIOC_QUERYCAP
	VIDIOC_ENUM_INPUT
	VIDIOC_S_INPUT
	VIDIOC_G_INPUT
	VIDIOC_S_PARM
	VIDIOC_G_PARM
	VIDIOC_ENUM_FMT
	VIDIOC_TRY_FMT
	VIDIOC_S_FMT
	VIDIOC_G_FMT
	VIDIOC_OVERLAY
	VIDIOC_REQBUFS
	VIDIOC_QUERYBUF
	VIDIOC_DQBUF
	VIDIOC_QBUF
	VIDIOC_STREAMON
	VIDIOC_STREAMOFF
	VIDIOC_QUERYCTRL
	VIDIOC_S_CTRL
	VIDIOC_G_CTRL
	VIDIOC_ENUM_FRAMESIZES
	VIDIOC_ENUM_FRAMEINTERVALS

