
Linux RTC
开发指南

版本号: 2.3
发布日期: 2021.04.08

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.0 2020.06.29 AWA1440 1. 添加初版
2.0 2020.11.12 XAA0192 1. 添加关于 linux-5.4 的内容
2.1 2020.11.16 XAA0175 1. 修正 make menuconfig 操作步骤
2.2 2020.11.18 XAA0175 1. 根据评审意见修正了文档
2.3 2021.04.08 XAA0175 1. 修改 linux5.4 的 device tree 配置

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 概述 1
1.1 编写目的 . 1
1.2 适用范围 . 1
1.3 相关人员 . 1

2 模块介绍 2
2.1 模块功能介绍 . 2
2.2 相关术语介绍 . 2
2.3 源码结构介绍 . 3

3 模块配置介绍 4
3.1 kernel menuconfig 配置 . 4

3.1.1 linux-4.9 版本下 . 4
3.1.2 linux-5.4 版本下 . 6

3.2 device tree 源码结构和路径 . 8
3.2.1 linux-4.9 版本下 . 9
3.2.2 linux-5.4 版本下 . 9

3.3 device tree 对 RTC 控制器的通用配置 . 9
3.3.1 linux-4.9 版本下 . 9
3.3.2 linux-5.4 版本下 . 10

3.4 board.dts 板级配置 . 10

4 接口描述 11
4.1 打开/关闭 RTC 设备 . 11
4.2 设置和获取 RTC 时间 . 11

5 模块使用范例 12

6 FAQ 14
6.1 RTC 时间不准 . 14
6.2 RTC 时间不走 . 14

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

插 图
2-1 Linux RTC 体系结构图 . 2
3-1 内核 menuconfig 根菜单 . 4
3-2 内核 menuconfig RTC 菜单 . 5
3-3 内核 menuconfig SUNXI RTC 驱动菜单 . 5
3-4 内核根菜单 . 6
3-5 内核 menuconfig 根菜单 . 7
3-6 内核 menuconfig 根菜单 . 8
6-1 RTC 时钟源 . 14

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

1 概述

1.1 编写目的
介绍 Linux 内核中 RTC 驱动的适配和 DEBUG 方法，为 RTC 设备的使用者和维护者提供参
考。

1.2 适用范围
表 1-1: 适用产品列表

产品名称 内核版本 驱动文件
全志所有产品 Linux-4.9 及以上 rtc-sunxi.c

1.3 相关人员
RTC 驱动及应用层的开发/维护人员。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 模块介绍

2.1 模块功能介绍
Linux 内核中,RTC 驱动的结构图如下所示, 可以分为三个层次:

图 2-1: Linux RTC 体系结构图

• 接口层，负责向用户空间提供操作的结点以及相关接口。
• RTC Core, 为 rtc 驱动提供了一套 API, 完成设备和驱动的注册等。
• RTC 驱动层，负责具体的 RTC 驱动实现，如设置时间、闹钟等设置寄存器的操作。

2.2 相关术语介绍
表 2-1: RTC 模块相关术语介绍

术语 解释说明
Sunxi 指 Allwinner 的一系列 SoC 硬件平台
RTC Real Time Clock，实时时钟

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

2.3 源码结构介绍

linux-4.9
└-- drivers

└-- rtc
|-- class.c
|-- hctosys.c
|-- interface.c
|-- rtc-dev.c
|-- rtc-lib.c
|-- rtc-proc.c
|-- rtc-sysfs.c
|-- systohc.c
|-- rtc-core.h
|-- rtc-sunxi.c
└-- rtc-sunxi.h

linux-5.4
└-- drivers

└-- rtc
|-- class.c
|-- hctosys.c
|-- interface.c
|-- dev.c
|-- lib.c
|-- proc.c
|-- sysfs.c
|-- systohc.c
|-- rtc-core.h
|-- rtc-sunxi.c
└-- rtc-sunxi.h

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

3 模块配置介绍

3.1 kernel menuconfig 配置

3.1.1 linux-4.9 版本下

在命令行中进入内核根目录 (kernel/linux-4.9)，执行make ARCH=arm64(arm) menuconfig(32 位系统为
make ARCH=arm menuconfig) 进入配置主界面 (linux-5.4 内核版本在 longan 目录下执
行:./build.sh menuconfig 进入配置主界面)，并按以下步骤操作：

首先，选择 Device Drivers 选项进入下一级配置，如下图所示：

图 3-1: 内核 menuconfig 根菜单

选择 Real Time Clock，进入下级配置，如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

图 3-2: 内核 menuconfig RTC 菜单

选择 Allwinner sunxi RTC，如下图所示：

图 3-3: 内核 menuconfig SUNXI RTC 驱动菜单

由于在关机过程中，RTC 一般都是独立供电的，因此在 RTC 电源域中的寄存器不会掉电且 RTC

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

寄存器的值也不会恢复为默认值。利用此特性，Sunxi 平台支持 reboot 命令的一些扩展功能和
假关机功能，但需要打开 support ir fake poweroff和 Sunxi rtc reboot Feature选项，RTC
驱动才能支持这些扩展功能。

3.1.2 linux-5.4 版本下

在命令行中进入 longan 顶层目录，执行./build.sh config，按照提示配置平台、板型等信息（如
果之前已经配置过，可跳过此步骤）。

然后执行./build.sh menuconfig，进入内核图形化配置界面，并按以下步骤操作：

选择Device Driver选项进入下一级配置，如下图所示：

图 3-4: 内核根菜单

选择Real Time Clock进入下一级配置，如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

图 3-5: 内核 menuconfig 根菜单

选择Allwinner sunxi RTC配置，如下图所示。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

图 3-6: 内核 menuconfig 根菜单

由于在关机过程中，RTC 一般都是独立供电的，因此在 RTC 电源域中的寄存器不会掉电且 RTC
寄存器的值也不会恢复为默认值。利用此特性，Sunxi 平台支持 reboot 命令的一些扩展功能，
但需要打开Sunxi rtc reboot flag和Sunxi rtc general register save bootcount选项，RTC 驱动才能
支持这些扩展功能。

3.2 device tree 源码结构和路径
SoC 级设备树文件（sun*.dtsi）是针对该 SoC 所有方案的通用配置：

• 对于 ARM64 CPU 而言，SoC 级设备树的路径为：arch/arm64/boot/dts/sunxi/sun*.dtsi

• 对于 ARM32 CPU 而言，SoC 级设备树的路径为：arch/arm/boot/dts/sun*.dtsi

板级设备树文件（board.dts）是针对该板型的专用配置：

• 板级设备树路径：device/config/chips/{IC}/configs/{BOARD}/board.dts

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

3.2.1 linux-4.9 版本下

device tree 的源码结构关系如下：

1 board.dts
2 └--------sun*.dtsi
3 |------sun*-pinctrl.dtsi
4 └------sun*-clk.dtsi

3.2.2 linux-5.4 版本下

device tree 的源码结构关系如下：

1 board.dts
2 └--------sun*.dtsi

3.3 device tree 对 RTC 控制器的通用配置

3.3.1 linux-4.9 版本下

1 / {
2 rtc: rtc@07000000 {
3 compatible = "allwinner,sunxi-rtc"; //用于probe驱动
4 device_type = "rtc";
5 auto_switch; //支持RTC使用的32k时钟源硬件自动切换
6 wakeup-source; //表示RTC是具备休眠唤醒能力的中断唤醒源
7 reg = <0x0 0x07000000 0x0 0x200>; //RTC寄存器基地址和映射范围
8 interrupts = <GIC_SPI 104 IRQ_TYPE_LEVEL_HIGH>; //RTC硬件中断号
9 gpr_offset = <0x100>; //RTC通用寄存器的偏移
10 gpr_len = <8>; //RTC通用寄存器的个数
11 gpr_cur_pos = <6>;
12 };
13 }

说明
对于 linux-4.9 内核，当 RTC 结点下配置 auto_switch 属性时，RTC 硬件会自动扫描检查外部 32k 晶体振荡器的起振情
况。当外部晶体振荡器工作异常时，RTC 硬件会自动切换到内部 RC16M 时钟分频出来的 32k 时钟，从而保证 RTC 工作正
常。当没有配置该属性时，驱动代码中直接把 RTC 时钟源设置为外部 32k 晶体的，当外部 32K 晶体工作异常时，RTC 会工
作异常。因此建议配置上该属性。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

3.3.2 linux-5.4 版本下

1 / {
2 rtc: rtc@7000000 {
3 compatible = "allwinner,sun50iw10p1-rtc"; //用于probe驱动
4 device_type = "rtc";
5 wakeup-source; //表示RTC是具备休眠唤醒能力的中断唤醒源
6 reg = <0x0 0x07000000 0x0 0x200>; //RTC寄存器基地址和映射范围
7 interrupts = <GIC_SPI 108 IRQ_TYPE_LEVEL_HIGH>; //RTC硬件中断号
8 clocks = <&r_ccu CLK_R_AHB_BUS_RTC>, <&rtc_ccu CLK_RTC_1K>; //RTC所用到的时钟
9 clock-names = "r-ahb-rtc", "rtc-1k"; //上述时钟的名字
10 resets = <&r_ccu RST_R_AHB_BUS_RTC>;
11 gpr_cur_pos = <6>; //当前被用作reboot-flag的通用寄存器的序号
12 };
13 }

在 Device Tree 中对每一个 RTC 控制器进行配置, 一个 RTC 控制器对应一个 RTC 节点, 节点
属性的含义见注释。

3.4 board.dts 板级配置
board.dts用于保存每个板级平台的设备信息 (如 demo 板、demo2.0 板等等)。board.dts路径如
下：

device/config/chips/{IC}/configs/{BOARD}/board.dts

在board.dts中的配置信息如果在*.dtsi(如sun50iw9p1.dtsi等) 中存在，则会存在以下覆盖规则：

1. 相同属性和结点，board.dts的配置信息会覆盖*.dtsi中的配置信息
2. 新增加的属性和结点，会添加到编译生成的 dtb 文件中

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

4 接口描述

RTC 驱动会注册生成串口设备/dev/rtcN，应用层的使用只需遵循 Linux 系统中的标准 RTC 编程
方法即可。

4.1 打开/关闭 RTC 设备
使用标准的文件打开函数：

1 int open(const char *pathname, int flags);
2 int close(int fd);

需要引用头文件：

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 #include <unistd.h>

4.2 设置和获取 RTC 时间
同样使用标准的 ioctl 函数：

1 int ioctl(int d, int request, ...);

需要引用头文件：

1 #include <sys/ioctl.h>
2 #include <linux/rtc.h>

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

5 模块使用范例

此 demo 程序是打开一个 RTC 设备，然后设置和获取 RTC 时间以及设置闹钟功能。

1 #include <stdio.h> /*标准输入输出定义*/
2 #include <stdlib.h> /*标准函数库定义*/
3 #include <unistd.h> /*Unix 标准函数定义*/
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <fcntl.h> /*文件控制定义*/
7 #include <linux/rtc.h> /*RTC支持的CMD*/
8 #include <errno.h> /*错误号定义*/
9 #include <string.h>
10
11 #define RTC_DEVICE_NAME "/dev/rtc0"
12
13 int set_rtc_timer(int fd)
14 {
15 struct rtc_time rtc_tm = {0};
16 struct rtc_time rtc_tm_temp = {0};
17
18 rtc_tm.tm_year = 2020 - 1900; /* 需要设置的年份，需要减1900 */
19 rtc_tm.tm_mon = 11 - 1; /* 需要设置的月份,需要确保在0-11范围 */
20 rtc_tm.tm_mday = 21; /* 需要设置的日期 */
21 rtc_tm.tm_hour = 10; /* 需要设置的时间 */
22 rtc_tm.tm_min = 12; /* 需要设置的分钟时间 */
23 rtc_tm.tm_sec = 30; /* 需要设置的秒数 */
24
25 /* 设置RTC时间 */
26 if (ioctl(fd, RTC_SET_TIME, &rtc_tm) < 0) {
27 printf("RTC_SET_TIME failed\n");
28 return -1;
29 }
30
31 /* 获取RTC时间 */
32 if (ioctl(fd, RTC_RD_TIME, &rtc_tm_temp) < 0) {
33 printf("RTC_RD_TIME failed\n");
34 return -1;
35 }
36 printf("RTC_RD_TIME return %04d-%02d-%02d %02d:%02d:%02d\n",
37 rtc_tm_temp.tm_year + 1900, rtc_tm_temp.tm_mon + 1, rtc_tm_temp.tm_mday,
38 rtc_tm_temp.tm_hour, rtc_tm_temp.tm_min, rtc_tm_temp.tm_sec);
39 return 0;
40 }
41
42 int set_rtc_alarm(int fd)
43 {
44 struct rtc_time rtc_tm = {0};
45 struct rtc_time rtc_tm_temp = {0};
46
47 rtc_tm.tm_year = 0; /* 闹钟忽略年设置 */
48 rtc_tm.tm_mon = 0; /* 闹钟忽略月设置 */
49 rtc_tm.tm_mday = 0; /* 闹钟忽略日期设置 */

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

50 rtc_tm.tm_hour = 10; /* 需要设置的时间 */
51 rtc_tm.tm_min = 12; /* 需要设置的分钟时间 */
52 rtc_tm.tm_sec = 30; /* 需要设置的秒数 */
53
54 /* set alarm time */
55 if (ioctl(fd, RTC_ALM_SET, &rtc_tm) < 0) {
56 printf("RTC_ALM_SET failed\n");
57 return -1;
58 }
59
60 if (ioctl(fd, RTC_AIE_ON) < 0) {
61 printf("RTC_AIE_ON failed!\n");
62 return -1;
63 }
64
65 if (ioctl(fd, RTC_ALM_READ, &rtc_tm_temp) < 0) {
66 printf("RTC_ALM_READ failed\n");
67 return -1;
68 }
69
70 printf("RTC_ALM_READ return %04d-%02d-%02d %02d:%02d:%02d\n",
71 rtc_tm_temp.tm_year + 1900, rtc_tm_temp.tm_mon + 1, rtc_tm_temp.tm_mday,
72 rtc_tm_temp.tm_hour, rtc_tm_temp.tm_min, rtc_tm_temp.tm_sec);
73 return 0;
74 }
75
76 int main(int argc, char *argv[])
77 {
78 int fd;
79 int ret;
80
81 /* open rtc device */
82 fd = open(RTC_DEVICE_NAME, O_RDWR);
83 if (fd < 0) {
84 printf("open rtc device %s failed\n", RTC_DEVICE_NAME);
85 return -ENODEV;
86 }
87
88 /* 设置RTC时间 */
89 ret = set_rtc_timer(fd);
90 if (ret < 0) {
91 printf("set rtc timer error\n");
92 return -EINVAL;
93 }
94
95 /* 设置闹钟 */
96 ret = set_rtc_alarm(fd);
97 if (ret < 0) {
98 printf("set rtc alarm error\n");
99 return -EINVAL;
100 }
101
102 close(fd);
103 return 0;
104 }

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

6 FAQ

6.1 RTC 时间不准
1. 按照下图 RTC 时钟源的路径，确认一下 RTC 所使用的时钟源

图 6-1: RTC 时钟源

2. 如果确认使用的时钟源为 RC16M，则确认一下有没有启用校准功能，因为 RC16M 有正负
50% 的偏差。

3. 如果使用外部晶体，则确认一下外部晶体的震荡频率是否正确。

6.2 RTC 时间不走
1. 请查看 RTC 时钟源图，确认一下使用的时钟源。
2. 当 RTC 时钟源为外部 32K 时，请确认一下外部 32k 晶体的起振情况。

说明
当使用示波器测量外部 32k 晶体起振情况时，有可能会导致 32k 晶体起振。

3. 当排查完时钟源，确认时钟源没有问题后，通过以下命令 dump rtc 相关寄存器，查看偏移
0x0 寄存器的状态位 bit7 和 bit8 是否异常置 1 了，如下所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

/ # echo 0x07000000,0x07000200 > /sys/class/sunxi_dump/dump; cat /sys/class/sunxi_dump/dump
0x0000000007000000: 0x00004010 0x00000004 0x0000000f 0x7a000000
0x0000000007000010: 0x00000001 0x00000023 0x00000000 0x00000000
0x0000000007000020: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000030: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000040: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000050: 0x00000001 0x00000000 0x00000000 0x00000000
0x0000000007000060: 0x00000004 0x00000000 0x00000000 0x00000000
0x0000000007000070: 0x00010003 0x00000000 0x00000000 0x00000000
0x0000000007000080: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000090: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070000a0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070000b0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070000c0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070000d0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070000e0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070000f0: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000100: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000110: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000120: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000130: 0x00000000 0x000030ea 0x04001000 0x00006061
0x0000000007000140: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000150: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000160: 0x083f10f7 0x00000043 0x00000000 0x00000000
0x0000000007000170: 0x00000000 0x00000000 0x00000000 0x00000000
0x0000000007000180: 0x00000000 0x00000000 0x00010001 0x00000000
0x0000000007000190: 0x00000004 0x00000000 0x00000000 0x00000000
0x00000000070001a0: 0x000090ff 0x00000000 0x00000000 0x00000000
0x00000000070001b0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070001c0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070001d0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070001e0: 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000070001f0: 0x00000000 0x00000001 0x00000000 0x00000000
0x0000000007000200: 0x10000000

说明
每款 SoC 的模块首地址是不一样的，具体根据 spec 或 data sheet 确认模块首地址。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

著作权声明

版权所有 ©2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

	概述
	编写目的
	适用范围
	相关人员

	模块介绍
	模块功能介绍
	相关术语介绍
	源码结构介绍

	模块配置介绍
	kernel menuconfig配置
	linux-4.9版本下
	linux-5.4版本下

	device tree源码结构和路径
	linux-4.9版本下
	linux-5.4版本下

	device tree对RTC控制器的通用配置
	linux-4.9版本下
	linux-5.4版本下

	board.dts 板级配置

	接口描述
	打开/关闭RTC设备
	设置和获取RTC时间

	模块使用范例
	FAQ
	RTC时间不准
	RTC时间不走

