
Linux GPIO
开发指南

版本号: 2.3
发布日期: 2021.05.11

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.0 2020.06.29 AWA1440 添加初版
2.0 2020.11.19 AWA1527 for linux-5.4
2.1 2021.01.04 AWA1440 为 Linux-5.4 没有支持的接口添加警

告
2.2 2021.04.22 XAA0191 修改 Linux-5.4 中的部分描述
2.3 2021.05.11 XAS0022 修改 Linux-5.4 中的部分描述

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 概述 1

1.1 编写目的 . 1
1.2 适用范围 . 1
1.3 相关人员 . 1

2 模块介绍 2
2.1 模块功能介绍 . 2
2.2 相关术语介绍 . 2
2.3 总体框架 . 3
2.4 state/pinmux/pinconfig . 4
2.5 源码结构介绍 . 4

3 模块配置 6
3.1 kernel menuconfig 配置 . 6
3.2 device tree 源码结构和路径 . 8

3.2.1 device tree 对 gpio 控制器的通用配置 9
3.2.2 board.dts 板级配置 . 10

4 模块接口说明 11
4.1 pinctrl 接口说明 . 11

4.1.1 pinctrl_get . 11
4.1.2 pinctrl_put . 11
4.1.3 devm_pinctrl_get . 12
4.1.4 devm_pinctrl_put . 12
4.1.5 pinctrl_lookup_state . 12
4.1.6 pinctrl_select_state . 13
4.1.7 devm_pinctrl_get_select . 13
4.1.8 devm_pinctrl_get_select_default . 13
4.1.9 pin_config_get . 14
4.1.10 pin_config_set . 14

4.2 gpio 接口说明 . 15
4.2.1 gpio_request . 15
4.2.2 gpio_free . 15
4.2.3 gpio_direction_input . 15
4.2.4 gpio_direction_output . 16
4.2.5 __gpio_get_value . 16
4.2.6 __gpio_set_value . 16
4.2.7 of_get_named_gpio . 17
4.2.8 of_get_named_gpio_flags . 17

5 使用示例 18
5.1 使用 pin 的驱动 dts 配置示例 . 18

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

5.1.1 配置通用 GPIO 功能/中断功能 . 18
5.1.2 用法二 . 19

5.2 接口使用示例 . 20
5.2.1 配置设备引脚 . 20
5.2.2 获取 GPIO 号 . 20
5.2.3 GPIO 属性配置 . 21

5.3 设备驱动使用 GPIO 中断功能 . 23
5.4 设备驱动设置中断 debounce 功能 . 25

6 FAQ 26
6.1 常用 debug 方法 . 26

6.1.1 利用 sunxi_dump 读写相应寄存器 . 26
6.1.2 利用 sunxi_pinctrl 的 debug 节点 . 26
6.1.3 利用 pinctrl core 的 debug 节点 . 28
6.1.4 GPIO 中断问题排查步骤 . 30

6.1.4.1 GPIO 中断一直响应 . 30
6.1.4.2 GPIO 检测不到中断 . 30

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

插 图
2-1 pinctrl 驱动整体框架图 . 3
2-2 pinctrl 驱动 framework 图 . 4
3-1 内核 menuconfig 根菜单 . 6
3-2 内核 menuconfig device drivers 菜单 . 7
3-3 内核 menuconfig pinctrl drivers 菜单 . 7
3-4 内核 menuconfig allwinner pinctrl drivers 菜单 8
6-1 查看 pin 配置图 . 27
6-2 修改结果图 . 27
6-3 pin 设备图 . 28
6-4 pin 设备图 . 28

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iv

文档密级：秘密

1 概述

1.1 编写目的
本文档对内核的 GPIO 接口使用进行详细的阐述，让用户明确掌握 GPIO 配置、申请等操作的编
程方法。

1.2 适用范围
表 1-1: 适用产品列表

产品名称 内核版本 驱动文件
全志所有产品 Linux-4.9 及以上 pinctrl-sunxi.c

1.3 相关人员
本文档适用于所有需要在 Linux 内核 sunxi 平台上开发设备驱动的相关人员。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 模块介绍

Pinctrl 框架是 linux 系统为统一各 SoC 厂商 pin 管理，避免各 SoC 厂商各自实现相同 pin 管
理子系统而提出的。目的是为了减少 SoC 厂商系统移植工作量。

2.1 模块功能介绍
许多 SoC 内部都包含 pin 控制器，通过 pin 控制器，我们可以配置一个或一组引脚的功能和特
性。在软件上，Linux 内核 pinctrl 驱动可以操作 pin 控制器为我们完成如下工作：

• 枚举并且命名 pin 控制器可控制的所有引脚；
• 提供引脚的复用能力
• 提供配置引脚的能力，如驱动能力、上拉下拉、数据属性等。
• 与 gpio 子系统的交互
• 实现 pin 中断

2.2 相关术语介绍
表 2-1: Pinctrl 模块相关术语介绍

术语 解释说明
SUNXI Allwinner 一系列 SOC 硬件平台
Pin con-
troller

是对硬件模块的软件抽象，通常用来表示硬件控制器。能够处理引脚复用、属性
配置等功能

Pin 根据芯片不同的封装方式，可以表现为球形、针型等。软件上采用常用一组无符
号的整数 [0-maxpin] 来表示

Pin
groups

外围设备通常都不只一个引脚，比如 SPI，假设接在 SoC 的 {0,8,16,24} 管
脚，而另一个设备 I2C 接在 SoC 的 {24,25} 管脚。我们可以说这里有两个
pin groups。很多控制器都需要处理 pin groups。因此管脚控制器子系统需要
一个机制用来枚举管脚组且检索一个特定组中实际枚举的管脚

Pinconfig 管脚可以被软件配置成多种方式，多数与它们作为输入/输出时的电气特性相关。
例如，可以设置一个输出管脚处于高阻状态，或是 “三态”（意味着它被有效地断
开连接）。或者可以通过设置将一个输入管脚与 VDD 或 GND 相连 (上拉/下
拉)，以便在没有信号驱动管脚时使管脚拥有确认值

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

术语 解释说明
Pinmux 引脚复用功能，使用一个特定的物理管脚（ball/pad/finger/等等）进行多种扩

展复用，以支持不同功能的电气封装习惯
Device
tree

犹如它的名字，是一棵包括 cpu 的数量和类别、内存基地址、总线与桥、外设连
接，中断控制器和 gpio 以及 clock 等系统资源的树，Pinctrl 驱动支持从
device tree 中定义的设备节点获取 pin 的配置信息

2.3 总体框架
Sunxi Pinctrl 驱动模块的框架如下图所示，整个驱动模块可以分成 4 个部分：pinctrl api、
pinctrl common frame、sunxi pinctrl driver，以及 board configuration。（图中最上面
一层 device driver 表示 Pinctrl 驱动的使用者）

图 2-1: pinctrl 驱动整体框架图

Pinctrl api: pinctrl 提供给上层用户调用的接口。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

Pinctrl framework：Linux 提供的 pinctrl 驱动框架。

Pinctrl sunxi driver：sunxi 平台需要实现的驱动。

Board configuration：设备 pin 配置信息，一般采用设备树进行配置。

2.4 state/pinmux/pinconfig

Pinctrl framework 主要处理 pinstate、pinmux 和 pinconfig 三个功能，pinstate 和 pin-
mux、pinconfig 映射关系如下图所示。

图 2-2: pinctrl 驱动 framework 图

系统运行在不同的状态，pin 配置有可能不一样，比如系统正常运行时，设备的 pin 需要一组配
置，但系统进入休眠时，为了节省功耗，设备 pin 需要另一组配置。Pinctrl framwork 能够有
效管理设备在不同状态下的引脚配置。

2.5 源码结构介绍

linux
|
|-- drivers
| |-- pinctrl

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

| | |-- Kconfig
| | |-- Makefile
| | |-- core.c
| | |-- core.h
| | |-- devicetree.c
| | |-- devicetree.h
| | |-- pinconf.c
| | |-- pinconf.h
| | |-- pinmux.c
| | `-- pinmux.h
| `-- sunxi
| |-- pinctrl-sunxi-test.c
| |-- pinctrl-sun*.c
| `-- pinctrl-sun*-r.c
`-- include

`-- linux
`-- pinctrl

|-- consumer.h
|-- devinfo.h
|-- machine.h
|-- pinconf-generic.h
|-- pinconf.h
|-- pinctrl-state.h
|-- pinctrl.h
`-- pinmux.h

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

3 模块配置

3.1 kernel menuconfig 配置
进入 longan 根目录，执行./build.sh menuconfig

进入配置主界面，并按以下步骤操作:

首先，选择 Device Drivers 选项进入下一级配置，如下图所示：

图 3-1: 内核 menuconfig 根菜单

选择 Pin controllers, 进入下级配置，如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

图 3-2: 内核 menuconfig device drivers 菜单

选择 Allwinner SoC PINCTRL DRIVER, 进入下级配置，如下图所示：

图 3-3: 内核 menuconfig pinctrl drivers 菜单

Sunxi pinctrl driver 默认编译进内核，如下图（以 sun50iw9p1 平台为例，其他平台类似）所
示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

图 3-4: 内核 menuconfig allwinner pinctrl drivers 菜单

3.2 device tree 源码结构和路径
对于 Linux4.9：

• 设备树文件的配置是该 SoC 所有方案的通用配置，对于 ARM64 CPU 而言，设备树的路径
为：kernel/{KERNEL}/arch/arm64/boot/dts/sunxi/sun*-pinctrl.dtsi。

• 设备树文件的配置是该 SoC 所有方案的通用配置，对于 ARM32 CPU 而言，设备树的路径
为：kernel/{KERNEL}/arch/arm32/boot/dts/sun*-pinctrl.dtsi。

• 板级设备树 (board.dts) 路径：/device/config/chips/{IC}/configs/{BOARD}/board.dts

device tree 的源码结构关系如下：

board.dts
|--------sun*.dtsi

|------sun*-pinctrl.dtsi
|------sun*-clk.dtsi

对于 Linux5.4:

• 设备树文件的配置是该 SoC 所有方案的通用配置，对于 ARM64 CPU 而言，5.4 内核中不再
维护单独的 pinctrl的 dtsi，直接将 pin的信息放在了：kernel/{KERNEL}/arch/arm32/boot/dts/sun

*.dtsi

• 设备树文件的配置是该 SoC 所有方案的通用配置，对于 ARM32 CPU 而言，5.4 内核中不再
维护单独的 pinctrl的 dtsi，直接将 pin的信息放在了：kernel/{KERNEL}/arch/arm32/boot/dts/sun

*.dtsi

• 板级设备树 (board.dts) 路径：/device/config/chips/{IC}/configs/{BOARD}/board.dts
• device tree 的源码包含关系如下：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

board.dts
|--------sun*.dtsi

3.2.1 device tree 对 gpio 控制器的通用配置

在 kernel/{KERNEL}/arch/arm64/boot/dts/sunxi/sun-pinctrl.dtsi文件中 (Linux5.4直接
放在 sun.dtsi中)，配置了该 SoC的 pinctrl控制器的通用配置信息，一般不建议修改，有 pinc-
trl 驱动维护者维护。目前，在 sunxi 平台，我们根据电源域，注册两个 pinctrl 设备：r_pio 设
备 (PL0 后的所有 pin) 和 pio 设备 (PL0 前的所有 pin)，两个设备的通用配置信息如下：

1 r_pio: pinctrl@07022000 {
2 compatible = "allwinner,sun50iw9p1-r-pinctrl"; //兼容属性，用于驱动和设备绑定
3 reg = <0x0 0x07022000 0x0 0x400>; //寄存器基地址0x07022000和范围0x400
4 clocks = <&clk_cpurpio>; //r_pio设置使用的时钟
5 device_type = "r_pio"; //设备类型属性
6 gpio-controller; //表示是一个gpio控制器
7 interrupt-controller; //表示一个中断控制器，不支持中断可以删除
8 #interrupt-cells = <3>; //pin中断属性需要配置的参数个数，不支持中断可以删除
9 #size-cells = <0>; //没有使用，配置0

10 #gpio-cells = <6>; //gpio属性配置需要的参数个数,对于linux-5.4为3
11
12 /*
13 * 以下配置为模块使用的pin的配置，模块通过引用相应的节点对pin进行操作
14 * 由于不同板级的pin经常改变，建议通过板级dts修改（参考下一小节）
15 */
16 s_rsb0_pins_a: s_rsb0@0 {
17 allwinner,pins = "PL0", "PL1";
18 allwinner,function = "s_rsb0";
19 allwinner,muxsel = <2>;
20 allwinner,drive = <2>;
21 allwinner,pull = <1>;
22 };
23
24 /*
25 * 以下配置为linux-5.4模块使用pin的配置，模块通过引用相应的节点对pin进行操作
26 * 由于不同板级的pin经常改变，建议将模块pin的引用放到board dts中
27 *（类似pinctrl-0 = <&scr1_ph_pins>;),并使用scr1_ph_pins这种更有标识性的名字）。
28 */
29 scr1_ph_pins: scr1-ph-pins {
30 pins = "PH0", "PH1";
31 function = "sim1";
32 drive-strength = <10>;
33 bias-pull-up;
34 };
35 };
36
37 pio: pinctrl@0300b000 {
38 compatible = "allwinner,sun50iw9p1-pinctrl"; //兼容属性，用于驱动和设备绑定
39 reg = <0x0 0x0300b000 0x0 0x400>; //寄存器基地址0x0300b000和范围0x400
40 interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>, /* AW1823_GIC_Spec: GPIOA: 83-32=51

*/
41 <GIC_SPI 52 IRQ_TYPE_LEVEL_HIGH>,
42 <GIC_SPI 53 IRQ_TYPE_LEVEL_HIGH>,
43 <GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>,
44 <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>,

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

45 <GIC_SPI 56 IRQ_TYPE_LEVEL_HIGH>,
46 <GIC_SPI 57 IRQ_TYPE_LEVEL_HIGH>; //该设备每个bank支持的中断配置和gic中断号，

每个中断号对应一个支持中断的bank
47 device_type = "pio"; //设备类型属性
48 clocks = <&clk_pio>, <&clk_losc>, <&clk_hosc>; //该设备使用的时钟
49 gpio-controller; //表示是一个gpio控制器
50 interrupt-controller; //表示是一个中断控制器
51 #interrupt-cells = <3>; //pin中断属性需要配置的参数个数，不支持中断可以删除
52 #size-cells = <0>; //没有使用
53 #gpio-cells = <6>; //gpio属性需要配置的参数个数,对于linux-5.4为3
54 /* takes the debounce time in usec as argument */
55 }

3.2.2 board.dts 板级配置

board.dts 用于保存每个板级平台的设备信息 (如 demo 板、demo2.0 板等等)，以 demo 板为
例，board.dts 路径如下：

/device/config/chips/{CHIP}/configs/demo/board.dts

在 board.dts中的配置信息如果在 *.dtsi中 (如 sun50iw9p1.dtsi等)存在，则会存在以下覆盖
规则：

• 相同属性和结点，board.dts 的配置信息会覆盖 *.dtsi 中的配置信息。
• 新增加的属性和结点，会追加到最终生成的 dtb 文件中。

linux-4.9 上面 pinctrl 中一些模块使用 board.dts 的简单配置如下：

1 pio: pinctrl@0300b000 {
2 input-debounce = <0 0 0 0 0 0 0>; /*配置中断采样频率，每个对应一个支持中断的bank，单位us*/
3
4 spi0_pins_a: spi0@0 {
5 allwinner,pins = "PC0", "PC2", "PC4";
6 allwinner,pname = "spi0_sclk", "spi0_mosi", "spi0_miso";
7 allwinner,function = "spi0";
8 };
9 };

对于 linux-5.4，不建议采用上面的覆盖方式，而是修改驱动 pinctrl-0 引用的节点。

linux-5.4 上面 board.dts 的配置如下：

1 &pio{
2 input-debounce = <0 0 0 0 1 0 0 0 0>; //配置中断采样频率，每个对应一个支持中断的bank，单位us
3 vcc-pe-supply = <®_pio1_8>; //配置IO口耐压值，例如这里的含义是将pe口设置成1.8v耐压值
4 };

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

4 模块接口说明

4.1 pinctrl 接口说明

4.1.1 pinctrl_get

• 函数原型：struct pinctrl *pinctrl_get(struct device *dev);

• 作用：获取设备的 pin 操作句柄，所有 pin 操作必须基于此 pinctrl 句柄。
• 参数：

• dev: 指向申请 pin 操作句柄的设备句柄。

• 返回：

• 成功，返回 pinctrl 句柄。
• 失败，返回 NULL。

4.1.2 pinctrl_put

• 函数原型：void pinctrl_put(struct pinctrl *p)

• 作用：释放 pinctrl 句柄，必须与 pinctrl_get 配对使用。
• 参数：

• p: 指向释放的 pinctrl 句柄。

• 返回：

• 没有返回值。

! 警告
必须与 pinctrl_get 配对使用。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

4.1.3 devm_pinctrl_get

• 函数原型：struct pinctrl *devm_pinctrl_get(struct device *dev)

• 作用：根据设备获取 pin 操作句柄，所有 pin 操作必须基于此 pinctrl 句柄，与 pinctrl_get
功能完全一样，只是 devm_pinctrl_get 会将申请到的 pinctrl 句柄做记录，绑定到设备句柄
信息中。设备驱动申请 pin 资源，推荐优先使用 devm_pinctrl_get 接口。

• 参数：

• dev: 指向申请 pin 操作句柄的设备句柄。

• 返回：

• 成功，返回 pinctrl 句柄。
• 失败，返回 NULL。

4.1.4 devm_pinctrl_put

• 函数原型：void devm_pinctrl_put(struct pinctrl *p)

• 作用：释放 pinctrl 句柄，必须与 devm_pinctrl_get 配对使用。
• 参数：

• p: 指向释放的 pinctrl 句柄。

• 返回：

• 没有返回值。

! 警告
必须与 devm_pinctrl_get 配对使用，可以不显式的调用该接口。

4.1.5 pinctrl_lookup_state

• 函数原型：struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)

• 作用：根据 pin 操作句柄，查找 state 状态句柄。
• 参数：

• p: 指向要操作的 pinctrl 句柄。
• name: 指向状态名称，如 “default”、“sleep” 等。

• 返回：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

• 成功，返回执行 pin 状态的句柄 struct pinctrl_state *。
• 失败，返回 NULL。

4.1.6 pinctrl_select_state

• 函数原型：int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *s)

• 作用：将 pin 句柄对应的 pinctrl 设置为 state 句柄对应的状态。
• 参数：

• p: 指向要操作的 pinctrl 句柄。
• s: 指向 state 句柄。

• 返回：

• 成功，返回 0。
• 失败，返回错误码。

4.1.7 devm_pinctrl_get_select

• 函数原型：struct pinctrl *devm_pinctrl_get_select(struct device *dev, const char *name)

• 作用：获取设备的 pin 操作句柄，并将句柄设定为指定状态。
• 参数：

• dev: 指向管理 pin 操作句柄的设备句柄。
• name: 要设置的 state 名称，如 “default”、“sleep” 等。

• 返回：

• 成功，返回 pinctrl 句柄。
• 失败，返回 NULL。

4.1.8 devm_pinctrl_get_select_default

• 函数原型：struct pinctrl *devm_pinctrl_get_select_default(struct device *dev)

• 作用：获取设备的 pin 操作句柄，并将句柄设定为默认状态。
• 参数：

• dev: 指向管理 pin 操作句柄的设备句柄。

• 返回：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

• 成功，返回 pinctrl 句柄。
• 失败，返回 NULL。

4.1.9 pin_config_get

• 作用：获取指定 pin 的属性。
• 参数：

• dev_name: 指向 pinctrl 设备。
• name: 指向 pin 名称。
• config: 保存 pin 的配置信息。

• 返回：

• 成功，返回 pin 编号。
• 失败，返回错误码。

! 警告
该接口在 linux-5.4 已经移除。

4.1.10 pin_config_set

• 作用：设置指定 pin 的属性。
• 参数：

• dev_name: 指向 pinctrl 设备。
• name: 指向 pin 名称。
• config:pin 的配置信息。

• 返回：

• 成功，返回 0。
• 失败，返回错误码。

! 警告
该接口在 linux-5.4 已经移除。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

4.2 gpio 接口说明

4.2.1 gpio_request

• 函数原型：int gpio_request(unsigned gpio, const char *label)

• 作用：申请 gpio，获取 gpio 的访问权。
• 参数：

• gpio:gpio 编号。
• label:gpio 名称，可以为 NULL。

• 返回：

• 成功，返回 0。
• 失败，返回错误码。

4.2.2 gpio_free

• 函数原型：void gpio_free(unsigned gpio)

• 作用：释放 gpio。
• 参数：

• gpio:gpio 编号。

• 返回：

• 无返回值。

4.2.3 gpio_direction_input

• 函数原型：int gpio_direction_input(unsigned gpio)

• 作用：设置 gpio 为 input。
• 参数：

• gpio:gpio 编号。

• 返回：

• 成功，返回 0。
• 失败，返回错误码。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

4.2.4 gpio_direction_output

• 函数原型：int gpio_direction_output(unsigned gpio, int value)

• 作用：设置 gpio 为 output。
• 参数：

• gpio:gpio 编号。
• value: 期望设置的 gpio 电平值，非 0 表示高, 0 表示低。

• 返回：

• 成功，返回 0.
• 失败，返回错误码。

4.2.5 __gpio_get_value

• 函数原型：int __gpio_get_value(unsigned gpio)

• 作用：获取 gpio 电平值 (gpio 已为 input/output 状态)。
• 参数：

• gpio:gpio 编号。

• 返回：

• 返回 gpio 对应的电平逻辑，1 表示高, 0 表示低。

4.2.6 __gpio_set_value

• 函数原型：void __gpio_set_value(unsigned gpio, int value)

• 作用：设置 gpio 电平值 (gpio 已为 input/output 状态)。
• 参数：

• gpio:gpio 编号。
• value: 期望设置的 gpio 电平值，非 0 表示高, 0 表示低。

• 返回：

• 无返回值

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

4.2.7 of_get_named_gpio

• 函数原型：int of_get_named_gpio(struct device_node *np, const char *propname, int index)

• 作用：通过名称从 dts 解析 gpio 属性并返回 gpio 编号。
• 参数：

• np: 指向使用 gpio 的设备结点。
• propname:dts 中属性的名称。
• index:dts 中属性的索引值。

• 返回：

• 成功，返回 gpio 编号。
• 失败，返回错误码。

4.2.8 of_get_named_gpio_flags

• 函数原型：int of_get_named_gpio_flags(struct device_node *np, const char *list_name, int index,

enum of_gpio_flags *flags)

• 作用：通过名称从 dts 解析 gpio 属性并返回 gpio 编号。
• 参数：

• np: 指向使用 gpio 的设备结点。
• propname:dts 中属性的名称。
• index:dts 中属性的索引值
• flags: 在 sunxi 平台上，必须定义为 struct gpio_config * 类型变量，因为 sunxi pinctrl
的 pin 支持上下拉，驱动能力等信息，而内核 enum of_gpio_flags * 类型变量只能包含输
入、输出信息，后续 sunxi 平台需要标准化该接口。

• 返回：

• 成功，返回 gpio 编号。
• 失败，返回错误码。

! 警告
该接口的 flags 参数，在 sunxi linux-4.9 及以前的平台上，必须定义为 struct gpio_config 类
型变量。linux-5.4 已经标准化该接口，直接采用 enum of_gpio_flags 的定义。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

5 使用示例

5.1 使用 pin 的驱动 dts 配置示例
对于使用 pin 的驱动来说，驱动主要设置 pin 的常用的几种功能，列举如下：

• 驱动使用者只配置通用 GPIO, 即用来做输入、输出和中断的
• 驱动使用者设置 pin 的 pin mux，如 uart 设备的 pin,lcd 设备的 pin 等，用于特殊功能
• 驱动使用者既要配置 pin 的通用功能，也要配置 pin 的特性

下面对常见使用场景进行分别介绍。

5.1.1 配置通用 GPIO 功能/中断功能

用法一：配置 GPIO，中断，device tree 配置 demo 如下所示：

1 soc{
2 ...
3 gpiokey {
4 device_type = "gpiokey";
5 compatible = "gpio-keys";
6
7 ok_key {
8 device_type = "ok_key";
9 label = "ok_key";

10 gpios = <&r_pio PL 0x4 0x0 0x1 0x0 0x1>; //如果是linux-5.4，则应该为gpios = <&
r_pio 0 4 GPIO_ACTIVE_HIGH>;

11 linux,input-type = "1>";
12 linux,code = <0x1c>;
13 wakeup-source = <0x1>;
14 };
15 };
16 ...
17 };

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

说明
说明：gpio in/gpio out/ interrupt采用dts的配置方法，配置参数解释如下：
对于linux-4.9:
gpios = <&r_pio PL 0x4 0x0 0x1 0x0 0x1>;

| | | | | | `---输出电平，只有output才有效
| | | | | `-------驱动能力，值为0x0时采用默认值
| | | | `-----------上下拉，值为0x1时采用默认值
| | | `---------------复用类型
| | `-------------------当前bank中哪个引脚
| `-----------------------哪个bank
`---------------------------指向哪个pio，属于cpus要用&r_pio

使用上述方式配置gpio时，需要驱动调用以下接口解析dts的配置参数：
int of_get_named_gpio_flags(struct device_node *np, const char *list_name, int index,

enum of_gpio_flags *flags)
拿到gpio的配置信息后(保存在flags参数中，见4.2.8.小节)，在根据需要调用相应的标准接口实现自己的功能

对于linux-5.4:
gpios = <&r_pio 0 4 GPIO_ACTIVE_HIGH>;

| | |
| | `-------------------gpio active时状态，如果需要上下拉，还可以或上

GPIO_PULL_UP、GPIO_PULL_DOWN标志
| `-----------------------哪个bank
`---------------------------指向哪个pio，属于cpus要用&r_pio

5.1.2 用法二

用法二：配置设备引脚，device tree 配置 demo 如下所示：

1 device tree对应配置
2 soc{
3 pio: pinctrl@0300b000 {
4 ...
5 uart0_ph_pins_a: uart0-ph-pins-a {
6 allwinner,pins = "PH7", "PH8";
7 allwinner,function = "uart0";
8 allwinner,muxsel = <3>;
9 allwinner,drive = <0x1>;

10 allwinner,pull = <0x1>;
11 };
12 /* 对于linux-5.4 请使用下面这种方式配置 */
13 mmc2_ds_pin: mmc2-ds-pin {
14 pins = "PC1";
15 function = "mmc2";
16 drive-strength = <30>;
17 bias-pull-up;
18 };
19 ...
20 }；
21 ...
22 uart0: uart@05000000 {
23 compatible = "allwinner,sun8i-uart";
24 device_type = "uart0";
25 reg = <0x0 0x05000000 0x0 0x400>;
26 interrupts = <GIC_SPI 49 IRQ_TYPE_LEVEL_HIGH>;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

27 clocks = <&clk_uart0>;
28 pinctrl-names = "default", "sleep";
29 pinctrl-0 = <&uart0_pins_a>;
30 pinctrl-1 = <&uart0_pins_b>;
31 uart0_regulator = "vcc-io";
32 uart0_port = <0>;
33 uart0_type = <2>;
34 };
35 ...
36 };

其中：

• pinctrl-0 对应 pinctrl-names 中的 default，即模块正常工作模式下对应的 pin 配置
• pinctrl-1 对应 pinctrl-names 中的 sleep，即模块休眠模式下对应的 pin 配置

5.2 接口使用示例

5.2.1 配置设备引脚

一般设备驱动只需要使用一个接口 devm_pinctrl_get_select_default 就可以申请到设备所有
pin 资源。

1 static int sunxi_pin_req_demo(struct platform_device *pdev)
2 {
3 struct pinctrl *pinctrl;
4
5 /* request device pinctrl, set as default state */
6 pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
7 if (IS_ERR_OR_NULL(pinctrl))
8 return -EINVAL;
9

10 return 0;
11 }

5.2.2 获取 GPIO 号

1 static int sunxi_pin_req_demo(struct platform_device *pdev)
2 {
3 struct device *dev = &pdev->dev;
4 struct device_node *np = dev->of_node;
5 unsigned int gpio;
6
7 #get gpio config in device node.
8 gpio = of_get_named_gpio(np, "vdevice_3", 0);
9 if (!gpio_is_valid(gpio)) {

10 if (gpio != -EPROBE_DEFER)

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

文档密级：秘密

11 dev_err(dev, "Error getting vdevice_3\n");
12 return gpio;
13 }
14 }

5.2.3 GPIO 属性配置

通过 pin_config_set/pin_config_get/pin_config_group_set/pin_config_group_get 接口单
独控制指定 pin 或 group 的相关属性。

1 static int pctrltest_request_all_resource(void)
2 {
3 struct device *dev;
4 struct device_node *node;
5 struct pinctrl *pinctrl;
6 struct sunxi_gpio_config *gpio_list = NULL;
7 struct sunxi_gpio_config *gpio_cfg;
8 unsigned gpio_count = 0;
9 unsigned gpio_index;

10 unsigned long config;
11 int ret;
12
13 dev = bus_find_device_by_name(&platform_bus_type, NULL, sunxi_ptest_data->dev_name);
14 if (!dev) {
15 pr_warn("find device [%s] failed...\n", sunxi_ptest_data->dev_name);
16 return -EINVAL;
17 }
18
19 node = of_find_node_by_type(NULL, dev_name(dev));
20 if (!node) {
21 pr_warn("find node for device [%s] failed...\n", dev_name(dev));
22 return -EINVAL;
23 }
24 dev->of_node = node;
25
26
27 pr_warn("++++++++++++++++++++++++++++%s++++++++++++++++++++++++++++\n", __func__);
28 pr_warn("device[%s] all pin resource we want to request\n", dev_name(dev));
29 pr_warn("---\n");
30
31 pr_warn("step1: request pin all resource.\n");
32 pinctrl = devm_pinctrl_get_select_default(dev);
33 if (IS_ERR_OR_NULL(pinctrl)) {
34 pr_warn("request pinctrl handle for device [%s] failed...\n", dev_name(dev));
35 return -EINVAL;
36 }
37
38 pr_warn("step2: get device[%s] pin count.\n", dev_name(dev));
39 ret = dt_get_gpio_list(node, &gpio_list, &gpio_count);
40 if (ret < 0 || gpio_count == 0) {
41 pr_warn(" devices own 0 pin resource or look for main key failed!\n");
42 return -EINVAL;
43 }
44
45 pr_warn("step3: get device[%s] pin configure and check.\n", dev_name(dev));

版权所有 © 珠海全志科技股份有限公司。保留一切权利 21

文档密级：秘密

46 for (gpio_index = 0; gpio_index < gpio_count; gpio_index++) {
47 gpio_cfg = &gpio_list[gpio_index];
48
49 /*check function config */
50 config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC, 0xFFFF);
51 pin_config_get(SUNXI_PINCTRL, gpio_cfg->name, &config);
52 if (gpio_cfg->mulsel != SUNXI_PINCFG_UNPACK_VALUE(config)) {
53 pr_warn("failed! mul value isn't equal as dt.\n");
54 return -EINVAL;
55 }
56
57 /*check pull config */
58 if (gpio_cfg->pull != GPIO_PULL_DEFAULT) {
59 config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_PUD, 0xFFFF);
60 pin_config_get(SUNXI_PINCTRL, gpio_cfg->name, &config);
61 if (gpio_cfg->pull != SUNXI_PINCFG_UNPACK_VALUE(config)) {
62 pr_warn("failed! pull value isn't equal as dt.\n");
63 return -EINVAL;
64 }
65 }
66
67 /*check dlevel config */
68 if (gpio_cfg->drive != GPIO_DRVLVL_DEFAULT) {
69 config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_DRV, 0XFFFF);
70 pin_config_get(SUNXI_PINCTRL, gpio_cfg->name, &config);
71 if (gpio_cfg->drive != SUNXI_PINCFG_UNPACK_VALUE(config)) {
72 pr_warn("failed! dlevel value isn't equal as dt.\n");
73 return -EINVAL;
74 }
75 }
76
77 /*check data config */
78 if (gpio_cfg->data != GPIO_DATA_DEFAULT) {
79 config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_DAT, 0XFFFF);
80 pin_config_get(SUNXI_PINCTRL, gpio_cfg->name, &config);
81 if (gpio_cfg->data != SUNXI_PINCFG_UNPACK_VALUE(config)) {
82 pr_warn("failed! pin data value isn't equal as dt.\n");
83 return -EINVAL;
84 }
85 }
86 }
87
88 pr_warn("---\n");
89 pr_warn("test pinctrl request all resource success!\n");
90 pr_warn("++++++++++++++++++++++++++++end++++++++++++++++++++++++++++\n\n");
91 return 0;
92 }
93 注：需要注意，存在SUNXI_PINCTRL和SUNXI_R_PINCTRL两个pinctrl设备，cpus域的pin需要使用

SUNXI_R_PINCTRL

版权所有 © 珠海全志科技股份有限公司。保留一切权利 22

文档密级：秘密

! 警告
linux5.4 中 使 用 pinctrl_gpio_set_config 配 置 gpio 属 性， 对 应 使 用
pinconf_to_config_pack 生成 config 参数：

• SUNXI_PINCFG_TYPE_FUNC 已不再生效，暂未支持 FUNC 配置（建议使用 pinctrl_select_state
接口代替）

• SUNXI_PINCFG_TYPE_PUD 更新为内核标准定义（PIN_CONFIG_BIAS_PULL_UP/PIN_CONFIG_BIAS_PULL_DOWN）
• SUNXI_PINCFG_TYPE_DRV 更新为内核标准定义（PIN_CONFIG_DRIVE_STRENGTH），相应的 val 对
应关系为（4.9->5.4: 0->10, 1->20…）

• SUNXI_PINCFG_TYPE_DAT 已不再生效，暂未支持 DAT 配置（建议使用 gpio_direction_output
或者 __gpio_set_value 设置电平值）

5.3 设备驱动使用 GPIO 中断功能
方式一：通过 gpio_to_irq 获取虚拟中断号，然后调用申请中断函数即可

目前 sunxi-pinctrl 使用 irq-domain 为 gpio 中断实现虚拟 irq 的功能，使用 gpio 中断功能
时，设备驱动只需要通过 gpio_to_irq 获取虚拟中断号后，其他均可以按标准 irq 接口操作。

1 static int sunxi_gpio_eint_demo(struct platform_device *pdev)
2 {
3 struct device *dev = &pdev->dev;
4 int virq;
5 int ret;
6 /* map the virq of gpio */
7 virq = gpio_to_irq(GPIOA(0));
8 if (IS_ERR_VALUE(virq)) {
9 pr_warn("map gpio [%d] to virq failed, errno = %d\n",

10 GPIOA(0), virq);
11 return -EINVAL;
12 }
13 pr_debug("gpio [%d] map to virq [%d] ok\n", GPIOA(0), virq);
14 /* request virq, set virq type to high level trigger */
15 ret = devm_request_irq(dev, virq, sunxi_gpio_irq_test_handler,
16 IRQF_TRIGGER_HIGH, "PA0_EINT", NULL);
17 if (IS_ERR_VALUE(ret)) {
18 pr_warn("request virq %d failed, errno = %d\n", virq, ret);
19 return -EINVAL;
20 }
21 return 0;
22 }

方式二：通过 dts 配置 gpio 中断，通过 dts 解析函数获取虚拟中断号，最后调用申请中断函数
即可，demo 如下所示：

1 dts配置如下：
2 soc{
3 ...
4 Vdevice: vdevice@0 {
5 compatible = "allwinner,sun8i-vdevice";
6 device_type = "Vdevice";

版权所有 © 珠海全志科技股份有限公司。保留一切权利 23

文档密级：秘密

7 interrupt-parent = <&pio>; /*依赖的中断控制器(带interrupt-controller属性的结
点)*/

8 interrupts = < PD 3 IRQ_TYPE_LEVEL_HIGH>;
9 | | `------------------中断触发条件、类型

10 | `-------------------------pin bank内偏移
11 `---------------------------哪个bank
12 pinctrl-names = "default";
13 pinctrl-0 = <&vdevice_pins_a>;
14 test-gpios = <&pio PC 3 1 2 2 1>;
15 status = "okay";
16 };
17 ...
18 };

在驱动中，通过 platform_get_irq() 标准接口获取虚拟中断号，如下所示：

1 static int sunxi_pctrltest_probe(struct platform_device *pdev)
2 {
3 struct device_node *np = pdev->dev.of_node;
4 struct gpio_config config;
5 int gpio, irq;
6 int ret;
7
8 if (np == NULL) {
9 pr_err("Vdevice failed to get of_node\n");

10 return -ENODEV;
11 }
12
13 irq = platform_get_irq(pdev, 0);
14 if (irq < 0) {
15 printk("Get irq error!\n");
16 return -EBUSY;
17 }
18
19 sunxi_ptest_data->irq = irq;
20
21 return ret;
22 }
23
24 //申请中断：
25 static int pctrltest_request_irq(void)
26 {
27 int ret;
28 int virq = sunxi_ptest_data->irq;
29 int trigger = IRQF_TRIGGER_HIGH;
30
31 reinit_completion(&sunxi_ptest_data->done);
32
33 pr_warn("step1: request irq(%s level) for irq:%d.\n",
34 trigger == IRQF_TRIGGER_HIGH ? "high" : "low", virq);
35 ret = request_irq(virq, sunxi_pinctrl_irq_handler_demo1,
36 trigger, "PIN_EINT", NULL);
37 if (IS_ERR_VALUE(ret)) {
38 pr_warn("request irq failed !\n");
39 return -EINVAL;
40 }
41
42 pr_warn("step2: wait for irq.\n");
43 ret = wait_for_completion_timeout(&sunxi_ptest_data->done, HZ);

版权所有 © 珠海全志科技股份有限公司。保留一切权利 24

文档密级：秘密

44 if (ret == 0) {
45 pr_warn("wait for irq timeout!\n");
46 free_irq(virq, NULL);
47 return -EINVAL;
48 }
49
50 free_irq(virq, NULL);
51
52 pr_warn("---\n");
53 pr_warn("test pin eint success !\n");
54 pr_warn("+++++++++++++++++++++++++++end++++++++++++++++++++++++++++\n\n\n");
55
56 return 0;
57 }

5.4 设备驱动设置中断 debounce 功能
方式一：通过 dts 配置每个中断 bank 的 debounce，以 pio 设备为例，如下所示：

1 &pio {
2 /* takes the debounce time in usec as argument */
3 input-debounce = <0 0 0 0 0 0 0>;
4 | | | | | | `----------PA bank
5 | | | | | `------------PC bank
6 | | | | `--------------PD bank
7 | | | `----------------PF bank
8 | | `------------------PG bank
9 | `--------------------PH bank

10 `----------------------PI bank
11 };

注意：input-debounce 的属性值中需把 pio 设备支持中断的 bank 都配上，如果缺少，会以
bank 的顺序设置相应的属性值到 debounce 寄存器，缺少的 bank 对应的 debounce 应该是默
认值（启动时没修改的情况）。sunxi linux-4.9 平台，中断采样频率最大是 24M, 最小 32k，
debounce 的属性值只能为 0 或 1。对于 linux-5.4，debounce 取值范围是 0~1000000（单
位 usec）。

方式二：驱动模块调用 gpio 相关接口设置中断 debounce

1 static inline int gpio_set_debounce(unsigned gpio, unsigned debounce);
2 int gpiod_set_debounce(struct gpio_desc *desc, unsigned debounce);

在驱动中，调用上面两个接口即可设置 gpio 对应的中断 debounce 寄存器，注意，debounce
是以 ms 为单位的 (linux-5.4 已经移除这个接口)。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 25

文档密级：秘密

6 FAQ

6.1 常用 debug 方法

6.1.1 利用 sunxi_dump 读写相应寄存器

需要开启 SUNXI_DUMP 模块：

make kernel_menuconfig

---> Device Drivers
---> dump reg driver for sunxi platform (选中)

使用方法：

1 cd /sys/class/sunxi_dump
2 1.查看一个寄存器
3 echo 0x0300b048 > dump ;cat dump
4
5 2.写值到寄存器上
6 echo 0x0300b058 0xfff > write ;cat write
7
8 3.查看一片连续寄存器
9 echo 0x0300b000,0x0300bfff > dump;cat dump

10
11 4.写一组寄存器的值
12 echo 0x0300b058 0xfff,0x0300b0a0 0xfff > write;cat write
13
14 通过上述方式，可以查看，修改相应gpio的寄存器，从而发现问题所在。

6.1.2 利用 sunxi_pinctrl 的 debug 节点

需要开启 DEBUG_FS：

make kernel_menuconfig

---> Kernel hacking
---> Compile-time checks and compiler options
---> Debug Filesystem (选中)

挂载文件节点，并进入相应目录：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 26

文档密级：秘密

1 mount -t debugfs none /sys/kernel/debug
2
3 cd /sys/kernel/debug/sunxi_pinctrl

1. 查看 pin 的配置:

1 echo PC2 > sunxi_pin
2 cat sunxi_pin_configure

结果如下图所示：

图 6-1: 查看 pin 配置图

2. 修改 pin 属性

每个 pin 都有四种属性，如复用 (function)，数据 (data)，驱动能力 (dlevel)，上下拉 (pull)，
修改 pin 属性的命令如下：

1 echo PC2 1 > pull;cat pull
2 cat sunxi_pin_configure //查看修改情况

修改后结果如下图所示：

图 6-2: 修改结果图

版权所有 © 珠海全志科技股份有限公司。保留一切权利 27

文档密级：秘密

注意：在 sunxi 平台，目前多个 pinctrl 的设备，分别是 pio 和 r_pio 和 axpxxx-gpio，当操作
PL 之后的 pin 时，请通过以下命令切换 pin 的设备，否则操作失败，切换命令如下：

1 echo pio > /sys/kernel/debug/sunxi_pinctrl/dev_name //切换到pio设备
2 cat /sys/kernel/debug/sunxi_pinctrl/dev_name
3 echo r_pio > /sys/kernel/debug/sunxi_pinctrl/dev_name //切换到r_pio设备
4 cat /sys/kernel/debug/sunxi_pinctrl/dev_name

修改结果如下图所示：

图 6-3: pin 设备图

6.1.3 利用 pinctrl core 的 debug 节点

1 mount -t debugfs none /sys/kernel/debug
2
3 cd /sys/kernel/debug/sunxi_pinctrl

1. 查看 pin 的管理设备：

1 cat pinctrl-devices

结果如下图所示:

图 6-4: pin 设备图

2. 查看 pin 的状态和对应的使用设备

1 cat pinctrl-handles

结果如下图 log 所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 28

文档密级：秘密

console:/sys/kernel/debug/pinctrl # ls
pinctrl-devices pinctrl-handles pinctrl-maps pio r_pio
console:/sys/kernel/debug/pinctrl # cat pinctrl-handles
Requested pin control handlers their pinmux maps:
device: twi3 current state: sleep
state: default
type: MUX_GROUP controller pio group: PA10 (10) function: twi3 (15)
type: CONFIGS_GROUP controller pio group PA10 (10)config 00001409

config 00000005
type: MUX_GROUP controller pio group: PA11 (11) function: twi3 (15)
type: CONFIGS_GROUP controller pio group PA11 (11)config 00001409

config 00000005
state: sleep
type: MUX_GROUP controller pio group: PA10 (10) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PA10 (10)config 00001409

config 00000001
type: MUX_GROUP controller pio group: PA11 (11) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PA11 (11)config 00001409

config 00000001
device: twi5 current state: default
state: default
type: MUX_GROUP controller r_pio group: PL0 (0) function: s_twi0 (3)
type: CONFIGS_GROUP controller r_pio group PL0 (0)config 00001409

config 00000005
type: MUX_GROUP controller r_pio group: PL1 (1) function: s_twi0 (3)
type: CONFIGS_GROUP controller r_pio group PL1 (1)config 00001409

config 00000005
state: sleep
type: MUX_GROUP controller r_pio group: PL0 (0) function: io_disabled (4)
type: CONFIGS_GROUP controller r_pio group PL0 (0)config 00001409

config 00000001
type: MUX_GROUP controller r_pio group: PL1 (1) function: io_disabled (4)
type: CONFIGS_GROUP controller r_pio group PL1 (1)config 00001409

config 00000001
device: soc@03000000:pwm5@0300a000 current state: active
state: active
type: MUX_GROUP controller pio group: PA12 (12) function: pwm5 (16)
type: CONFIGS_GROUP controller pio group PA12 (12)config 00000001

config 00000000
config 00000000
state: sleep
type: MUX_GROUP controller pio group: PA12 (12) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PA12 (12)config 00000001

config 00000000
config 00000000
device: uart0 current state: default
state: default
state: sleep

device: uart1 current state: default
state: default
type: MUX_GROUP controller pio group: PG6 (95) function: uart1 (37)
type: CONFIGS_GROUP controller pio group PG6 (95)config 00001409

config 00000005
type: MUX_GROUP controller pio group: PG7 (96) function: uart1 (37)
type: CONFIGS_GROUP controller pio group PG7 (96)config 00001409

config 00000005
type: MUX_GROUP controller pio group: PG8 (97) function: uart1 (37)
type: CONFIGS_GROUP controller pio group PG8 (97)config 00001409

config 00000005
type: MUX_GROUP controller pio group: PG9 (98) function: uart1 (37)

版权所有 © 珠海全志科技股份有限公司。保留一切权利 29

文档密级：秘密

type: CONFIGS_GROUP controller pio group PG9 (98)config 00001409
config 00000005
state: sleep
type: MUX_GROUP controller pio group: PG6 (95) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PG6 (95)config 00001409

config 00000001
type: MUX_GROUP controller pio group: PG7 (96) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PG7 (96)config 00001409

config 00000001
type: MUX_GROUP controller pio group: PG8 (97) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PG8 (97)config 00001409

config 00000001
type: MUX_GROUP controller pio group: PG9 (98) function: io_disabled (5)
type: CONFIGS_GROUP controller pio group PG9 (98)config 00001409
....

从上面的部分 log 可以看到那些设备管理的 pin 以及 pin 当前的状态是否正确。以 twi3 设备为
例，twi3 管理的 pin 有 PA10/PA11，分别有两组状态 sleep 和 default，default 状态表示使
用状态，sleep 状态表示 pin 处于 io disabled 状态，表示 pin 不可正常使用，twi3 设备使用的
pin 当前状态处于 sleep 状态的。

6.1.4 GPIO 中断问题排查步骤

6.1.4.1 GPIO 中断一直响应

1. 排查中断信号是否一直触发中断
2. 利用 sunxi_dump 节点，确认中断 pending 位是否没有清 (参考 6.1.1 小节)
3. 是否在 gpio 中断服务程序里对中断检测的 gpio 进行 pin mux 的切换，不允许这样切换，否
则会导致中断异常

6.1.4.2 GPIO 检测不到中断

1. 排查中断信号是否正常，若不正常，则排查硬件，若正常，则跳到步骤 2

2. 利用 sunxi_dump 节点，查看 gpio 中断 pending 位是否置起，若已经置起，则跳到步骤
5，否则跳到步骤 3

3. 利用 sunxi_dump 节点，查看 gpio 的中断触发方式是否配置正确，若正确，则跳到步骤 4，
否则跳到步骤 5

4. 检查中断的采样时钟，默认应该是 32k，可以通过 sunxi_dump 节点，切换 gpio 中断采样
时钟到 24M 进行实验

5. 利用 sunxi_dump，确认中断是否使能

版权所有 © 珠海全志科技股份有限公司。保留一切权利 30

文档密级：秘密

著作权声明

版权所有 ©2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 31

	概述
	编写目的
	适用范围
	相关人员

	模块介绍
	模块功能介绍
	相关术语介绍
	总体框架
	state/pinmux/pinconfig
	源码结构介绍

	模块配置
	kernel menuconfig配置
	device tree源码结构和路径
	device tree对gpio控制器的通用配置
	board.dts 板级配置

	模块接口说明
	pinctrl接口说明
	pinctrl_get
	pinctrl_put
	devm_pinctrl_get
	devm_pinctrl_put
	pinctrl_lookup_state
	pinctrl_select_state
	devm_pinctrl_get_select
	devm_pinctrl_get_select_default
	pin_config_get
	pin_config_set

	gpio接口说明
	gpio_request
	gpio_free
	gpio_direction_input
	gpio_direction_output
	__gpio_get_value
	__gpio_set_value
	of_get_named_gpio
	of_get_named_gpio_flags

	使用示例
	使用pin的驱动dts配置示例
	配置通用GPIO功能/中断功能
	用法二

	接口使用示例
	配置设备引脚
	获取GPIO号
	GPIO属性配置

	设备驱动使用GPIO中断功能
	设备驱动设置中断debounce功能

	FAQ
	常用debug方法
	利用sunxi_dump读写相应寄存器
	利用sunxi_pinctrl的debug节点
	利用pinctrl core的debug节点
	GPIO中断问题排查步骤
	GPIO中断一直响应
	GPIO检测不到中断

