< Avuwiner

Linux G2D
FRigr

RAES: 2.1
%% HHE: 2021.4.10

@LWIMIER
’ STAYERLR: W

hRZs 758
hR2s S BHA HAZITA AEHR
1.0 2020.6.30 AWA1572 1. SIS
2.0 2020.11.18 AWA1639 1. EMEEL linux5.4
2.1 2021.4.10 AWA1693 1. ZN0n%e e 35 EE PR 15 BA

WRINFE © HRB2ERRRNERAR. RE—IF

@LWIMIER

MHER: WE

H =

1 8BS 1
1.1 TR . . o 1
1.2 BAREE . . . e 1
1.3 EREE e 1
2 BRNE 2
2.1 BRERINBENMGR o e 2
2.1.1 ¥EfIEF (fill colorrectgngle) 3
2.1.2 IEFEEMEME (rotate and mirror) 3
2.1.3 alphablending 4
2.1.4 colorkey 5
2.1.5 48HY (Stretchblt) 5
2.1.6 ZITHMHRIE (rop2) 6
2.1.7 =7THMHEIE (maskbltrop3) 6

2.2 MEERBNB e 7
2.2.1 BHRIE ... 7
222 BERE ... o 7

23 BHREENR e am e 8
2.3.1 Device Tree BER&i%AE L 8
2.3.2 kernel ménuconfig FEERAE A oo . L o 8

2.4 SRBEMNA. . . . 9
2.5 WEHEZRAZE . . . L. . o e 10
3 RRIEOHEA 11
3.1 RBEEELEM . . . L e 11
3.1.1g2d blt flags /A . . . e 11
3.1.2 g2d fillrect flags ./. 12
3.1.3 g2d data fmt(version 1.0) 12
3.1.4 g2d pixel seq(version 1.0) 14
3.1.5 g2d blt flags h 16
3.1.6 g2d image(version 1.0) 17
3.1.7 g2d image enh 18
3.1.8 g2d fmt enh 18
3.1.9 g2d rop3 cmd flag 20
3.1.10 g2d bld cmd flag 21
3.1.11 g2d ck e e 21
3.1.12 g2d alpha mode enh 22
3.1.13 g2d color gmt 22
3.1.14 g2d scan order(version 1.0) 23
3.1.15 g2d blt(version 1.0) 23
3.1.16 g2d fillrect(version 1.0) 24
3.1.17 g2d stretchblt(version 1.0) 24

WRAFRE © BseEREROERAE. RE—TNF ii

@LWIMIER
s MXHEER: WE

3.2

3.3

4 FAQ
4.1

3.1.18 g2d blt h e 25
3.1.19 g2d bld(version 1.0) 26
BREIED e 26
3.2.1 LORRZAIED 26
3.2.1.1 G2D CMD BITBLT 26
3.2.1.2 G2D CMD FILLRECT 28
3.2.1.3 G2D CMD STRETCHBLT 29
3.2.1.4 G2D CMD PALETTE TBL 30

3.2.2 20 RRAEED e 31
3.2.3 G2D CMD BITBLT H. e e e e 31
3.2.4 G2D CMD BLD H e 33
3.2.5 G2D CMD MASK H e e e 34
HERMEBIEDT e 35
3.3.1 G2D CMD MIXER TASK i i 36
3.3.2 G2D CMD CREATE TASK. i e e e e 39
3.3.3 G2D CMD TASK APPLY e e e e 40
3.3.4 G2D CMD TASK DESTROY @ 41
3.3.5 G2D CMD TASK GET PARA 4. . 0. oo 42
43

BIERR . .. e 43
4.1.1 SEFFRE 43
412 WHEBINER 0. . e 43
4.1.3 WHBEE . L .. o e 43

WRIRFE © HRB2ERRRNHERAE. RE—TIMF iii

@LWIMIER

MHER: WE

2-1 fillrectangle e 3
2-2 rotate and mirror L. e e e 4
2-3 alphablending 1 4
2-4 alphablending 2 5
2-5 colorkey e e e e 5
2-6 scale and alphablending, 6
2-7 masko e e 7
2-8 menuconfig 4.9 e e e e 8
2-9 menuconfig 5.4 L e e e e 9
2-10 G2D EBIEZRE e 10
3-1 mixerpara e e e e e e e e e e e e e 36

WRIRFE © HRB2ERRRNHERAE. RE—TIMF iv

@LWIMIER

MHER: WE

1.1 XHEfET

AXEENA sunxi TG G2D RIRAVThRE. WEhEEMRARIRIECEMBAR A

1.2 BiRRE

o G2D RhF &R AGI/EIF AR
o AR G2D tRREAE

N -
1.3 &S
& 1-1: SAF@mYIER

@B VAT IREhSC A
T509 Linux-4.9 g2d driver.c
MR813 Linux-4.9 g2d driver.c
R818 Linux-4.9 g2d driver.c
A133 Linux-4.9&Linux-5.4 g2d driver.c
R528 Linux-5.4 g2d.c

H616 Linux-4.9&Linux-5.4 g2d driver.c

WA © BSEERERHERAE. RE—TF

@LWIMIER
§ B W

G2D B FESLHEGREZ/BIERABAETEER, UKERESRINGE (B alpha.

colorkey. rotate. mirror. rop. maskblt) FEERINEE,

2.1 RIRIEENTE
G2D BT

e Input format: iYUV422/PYUV422UVC/PYUV420UVC/PYUV411UVC/ARGB8888/
XRGB8888/RGB888/ARGB4444/ARGB1555/RGB565

e Output format: iYUV422/PYUV422UVC/PYUV420UVC/PYUV411UVC/ARGB8888/
XRGB8888/RGB888/ARGB4444/ARGB1555/RGB565/Y8

e Any format convert funetion;"R/B swap

e 1 channel scaling pipelines for scaling up/down

e Programmalbe Source image size up to 2048*2048 pixels

¢ Programmalbe destination image size up to 2048*2048 pixels

e 4 tap scale filter in horizontal and 2 tap in vertical direction

e 32 programmable coefficients for each tap

e Color space conversion betwwen RGB and YUV

e Clipping support

e Straight line/Rectangle/Point
e Block fill

o Rotate and mirror

e Rotation 90/180/270 counter-clockwise
e Mirror horizontal/vertical

¢ ROP

e BitBlt
e StretchBlt
¢ MaskBlt

e Colorkey support

e Source colorkey
e Destination colorkey

WRAFRE © BseEREROERAE. RE—TNF 2

(Auwiner
ISR WE

e Alpha blending support

Pixel alpha blending
Plane alpha blending
Multi alpha blending
Output alpha configurable support

2.1.1 5EF21EZE (fill color rectgngle)

IRFE B X ThAE BT LASC IS SR K # (T HUT R B EIHT, W TEmMIERT 0xFFO080FF
B9 ARGB {8, ZIhREE A LB IR EMIERKEANENMBRMESZ, RNt LUETIRE flag K
R—MIERE &M BT alpha iE5,

|

2-1: fill rectangle

2.1.2 hmEtEME% (rotate and mirror)

REEGTESLMIA T Horizontal. Vertical. Rotate180°. Mirrord5°. Rotate90°.
Mirror135°. Rotate270° 3 7 #igfE,

WA © BSEERERHERAE. RE—TF 3

@LWIMIER
XHEER: WE

2-2: rotate and mirror

2.1.3 alpha blending

AEMEEZ 8" LU alpha blending, Alpha 439 pixel alpha. planealpha. multi alpha
=

pixel alpha BEASNMEEE®E—1"%JE alpha f&;

plane alpha MIR=TEBEHRAEGELEHE— globe alpha f&;

multi alpha M&EMEZEELA alpha EBEERIER globe alpha*pixel alpha, AJLUEE G2D
K&hiEOR flag &4,

i, e i, Fln

B = Ra*dn + Rl 25644}
e Oe®hs - AW I%6s)
HRC TR i frac S

Ad, Bid, G Bl

2-3: alpha blending 1

WA © BSEERERHERAE. RE—TF 4

@LWIMIER
’ STAYERLR: W

Tx B M

msch

destimenioe codior ke

2-4: alpha blending 2

2.1.4 colorkey

[image ZiB)AI LU colorkey HR:

o KEEF destination MRS T source, destination F match #p5 (BEEAEIS
), MERFEL, BRA source 5 destination f#f alpha blending G EE.

e AEH source MLLERK ST destination, N source F match 290 CROERAESS
), MREFRBEL, HIEER destination 5 sourcefifl alpha blending /S8 ERE,

Ny 4 e
S

msch

destimaiimeclor ke

2-5: colorkey

2.1.5 48R (Stretchblt)

Stretchblt TEZ source &I destination B size HITHEN, HERARS destination
alpha blending. colorkey FiZB N EHZEZREEENEIBR, WEOT 1.0 kA LFERT
LUiedeMge—ic A, B2 2.0 &G, FBRAeEA] LR R1E,

WA © BSEERERHERAE. RE—TF 5

Auwiner
’ AYER: W

StretchBlt

Destination

2-6: scale and alpha blending

2.1.6 ZiTitHH2{E (rop2)

HiTEESMNERXKIEN R EFEEN BIRRAS SRRV ERG R,

2.1.7 =75t M2{E (maskblt rop3)

STFEGEEF R R T ERSHAMR, RITELENE=MER: FEGEGR, BTEG
BER, BRIGE (RIREGER)s W TEFIR, MELEETS5)2 src ptn mask dsto

WA © BSEERERHERAE. RE—TF 6

A
(:;meR SAUBR: W

2-7: mask

2.2 HXRRKEBNE
2.2.1 BHAME

& 241 BHAIETIR

A& 5EA
G2D 2D Ef/ s

2.2.2 BEARIE

& 2-2: MEARIEBETIR

AiE WiRe

Fill Rectangle XY EIRKIFHHITIE NENEBEIETE

Rotate And mirror XY EMGIHI TR IR R IRIE

Alpha Blending SR EGIRRTEN L FIHITaERE
Colorkey ERTEGRSINESHER, SR EMIFHFSIE

IR © HiB2EREROBIRAR. RE—INF 7

@ LWIWER
g MXHEER: WE

2.3 BERECENTER

2.3.1 Device Tree E2& B

g2d:g2d@01480000{
compatible = "allwinner,sunxi-g2d";
reg = <0x0 0x01480000 0x0 Oxbffff>;
interrupts = <GIC SPI 21 0x0104>;
clocks = <&clk g2d>;
iommus = <&mmu aw 5 1>;
status = "okay";

2.3.2 kernel menuconfig B2 %A

2 1TH#H N longan BB R, #47./build.sh menuconfig #NEEEHE, 31T linux4.9,
BAREREN:

[Device Drivers->Character devices->sunxi g2d driver)

-

.config - Linux/arm64 4.9.1 lernel Configuration
> Device Drivers > Character devices
ac deyices

Arrow keys navigate the medu. <Entekr® selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y>» includes, <N> excludes, <M> modularizes
features. Press <Esc»><Esc® to exit, €2& for Help, </> for Search. Legend: [*] built-in []
excluded <M module < > module capable

i

£%» sunxi system info driver

[1 unxi QA test

[#] =unxi smc interfaces

<%*> tump reg driver for sunxi platform
Jump reg misc drdver
> Sunxi timer test driver
> Transform Driver Support(sunxi)
> allwinnertech DE-Interlace driver
1 unxi g2d mixer module (NEW)
1 unxi g2d rotate module (NEW)
> external audio asp support multiple input and output

< Exit > < Help > < Save > < Load >

2-8: menuconfig 4.9

XFF linux5.4, BEAREREZEN:

[Device Drivers->sunxi g2d driver]

WA © BSEERERHERAE. RE—TF 8

OLWIM/ER
KRER: W

confin _ 1 inuv/armg4 5.4.61 Kernel Configuration
= Device Drivers

D s
eys navigate the menu. <Enter> selects submenus ---> (or empty submenus - 2 ghlighted letters are hotkeys. Pressing <Y= includes, <N> excludes, <M=
modularizes features. Press <Esc=<Esc» to exit, <?» for Help, </> for Search. Legend: [*] built-in [] excluded <M= module =< > module capable

Network device support ----
[1 open-channel ssp target support ----

Input device support --->

Character devices ---»
[1 Trust the bootloader to initialize Linux's CRNG
<*> dump reg driver for sunxi platform

[1 sunxi g2d mixer module
[*] sunxi g2d rotate module
[1 sunxi sync fence implement for rotate jobs synchronous
TrIWINMer tect DE-INtertace Driver —---
sunxi system info driver

sunxi QA test
sunxi smc interfaces
12C support ---=
13C support ----
SPL suppart ---=
SPMI support ----
HSL suppart ----
PPS support ----
PTP clock support --->
Pin controllers ---»
CPIO Support --->
pallas's 1-wire support ----
sdaptive Voltage Scaling class support ----
Soard level reset or power off --->
Power supply class support ---=
Hardware Monitoring support
ceneric Thermal sysfs driver ---»
vatchdog Timer Support ----
<onics Silicon Backplane suppert ----
Broadcom specific AMBA ----
Multifunction device drivers ---=
Voltage and Current Regulator Support ---=
Femote Controller support ----
Multimedia support --->
Graphics suppert -
Sound card support
HID support ---=
USB support ---=
MMC/SD/SDIO card support ---=
Sony MemoryStick card support ----
LED Suppert ----
sccessibility support ----
InfiniBand support ----
Feal Time Clock --
OMA Engine suppor
CMABUF options ---=

(3

o i A) e

* K

S ety ¥

< Exit > < velp = < Save > < Load >

2-9: menuconfig 5:4

2.4 RIS 4E

G2d EehaY R F NAZIE drivers/char/sunxi g2d BRT:

drivers/char/sunxi _g2d/g2d rcq
g2d bld.c

g2d bld.h

g2d bsp.h

g2d.c
g2d_driver_i.h
g2d mixer.c

g2d _mixer.h

g2d mixer type.h
g2d ovl u.c
g2d_ovl u.h
g2d_ovl v.c

g2d ovl v.h

g2d rcq.c

g2d rcqg.h

g2d rotate.c
g2d_rotate.h

g2d rotate type.h
g2d scal.c

g2d scal.h

g2d top.c

g2d top.h

g2d top type.h

TTTTTTTTTTITTITTTITTTITTTT

IR © HiB2EREROBIRAR. RE—INF 9

(Auwiner
NHEER: W

F— g2d wb.c

F— g2d wb.h
L— Makefile

e g2d.c: I G2D WEHTNEX 4
e g2d xxxx.C: ¥ TIHXINEERISSILALIE

2.5 IXEHIESRTE

HAESRIN T EFR:

User Space

E 2-10: G2D HAEBHELRE

WA © BSEERERHERAE. RE—TF 10

@LWIMIER

XAEER:

3.1 XBEEIELE

3.1.1 g2d blt flags

o {EF

g2d blt flags AFHHR— bitblt 1 stretchblt B9 flag BMEER

o« EX

typedef enum {
G2D_BLT NONE
G2D BLT PIXEL ALPHA
G2D_BLT PLANE_ALPHA
G2D BLT MULTI (ALPHA
G2D BLT SRC COLORKEY
G2D BLT DST/ COLORKEY

=10x00000000,
= 0x00000001,
= 0x00000002;
= 0x00000004,
= 0x00000008,
= 0x00000010,

G2D BLT FLIP HORIZONTAL =0x00000020,

G2D BLT FLIP VERTICAL | = 0x00000040;
G2D BLT ROTATE90 = 0x00000080,
G2D BLT ROTATE180 = 0x00000100,
G2D BLT ROTATE270 = 0x00000200,
G2D BLT MIRROR45 = 0x00000400,
G2D BLT MIRROR135 = 0x00000800,

}g2d blt flags;

o RYCIULEA

G2D BLT NONE - 4D

G2D BLT PIXEL ALPHA - RalphatF&

G2D BLT PLANE ALPHA - MEalphatF&

G2D BLT MULTI ALPHA - E&alphatris

G2D BLT SRC_COLORKEY - iRcolorkey#F&

G2D BLT DST COLORKEY - BfFcolorkey#r&

G2D BLT FLIP HORIZONTAL - 7KFERE%:

G2D BLT FLIP VERTICAL - EHEE

G2D BLT ROTATE90 - BTETHER 90

G2D BLT ROTATE180 - EIEER 180

G2D BLT ROTATE270 - PEEREE270E

G2D BLT MIRROR45 - $RIRASE

IR © HiB2EREROBIRAR. RE—INF

11

@LWIMIER
: KRER: W

13 l G2D_BLT_MIRROR135 - $RR135E J

3.1.2 g2d fillrect flags

o {EF
g2d fillrect flags AF#ER—" fillrect EMER

e EX

1] typedef enum {

2 G2D_FIL NONE = 0x00000000,
3 G2D_FIL PIXEL ALPHA = 0x00000001,
4 G2D_FIL PLANE ALPHA = 0x00000002,
5 G2D_FIL MULTI ALPHA = 0x00000004,
6

}g2d fillrect flags;

o FXZILFR

1| G2D_FIL NONE - AT

2| 62D FIL PIXEL ALPHA - iEZXIEFIERHSalpha

3| G20 FIL PLANE ALPHA - iEZXIFIB#R{iEalpha

4| G2D_FIL_MULTI_ALPHA - iEzXiEiiValphafE*Ealphaf@/EEHM B Ralpha
3.1.3 g2d data fmt(version 1.0)
o R

g2d data fmt AFHEREERR

e EX

1.0 hRASTHFEIEBRAE T

1] typedef enum {

2 G2D_FMT ARGB AYUV8888 = (0x0),
3 G2D_FMT BGRA VUYA8888 = (0x1),
4 G2D_FMT ABGR AVUY8888 = (0x2),
5 G2D FMT RGBA YUVA8888 = (0x3),
6 G2D FMT XRGB8888 = (0x4),

IR © HiB2EREROBIRAR. RE—INF 12

—_

@LWIMIER
: KRER: W

G2D FMT BGRX8888 = (0x5),
G2D_FMT XBGR8888 = (0x6),
G2D_FMT RGBX8888 = (0x7),
G2D_FMT ARGB4444 = (0x8),
G2D_FMT ABGR4444 = (0x9),
G2D FMT RGBA4444 = (0xA),
G2D_FMT BGRA4444 = (0xB),
G2D_FMT ARGB1555 = (0xC),
G2D_FMT_ABGR1555 = (0xD),
G2D_FMT RGBA5551 = (OXE),
G2D FMT BGRA5551 = (OxF),
G2D FMT RGB565 = (0x10),
G2D_FMT BGR565 = (0x11),
G2D_FMT_IYUV422 = (0x12),
G2D_FMT_8BPP_MONO = (0x13),
G2D_FMT_4BPP_MONO = (0x14),
G2D_FMT 2BPP_MONO = (0x15),
G2D_FMT 1BPP_MONO = (0x16),
G2D_FMT_PYUV422UVC = (0x17),
G2D_FMT_PYUV420UVC = (0x18),
G2D_FMT_PYUV411UVC = (0x19),
//RBEHEAEE:
G2D_FMT PYUV422 = (0x1A),
G2D_FMT_PYUV420 = (0x1B),
G2D_FMT PYUV411 = (0x1C),
//RBWMAA ZHRBE :
G2D FMT 8BPP_PALETTE = (6x1D),
G2D_FMT 4BPP_PALETTE«" = (Ox1E),
G2D_FMT 2BPP_PALETTE = (Ox1F),
G2D_FMT 1BPP_PALETTE =(0x20),

G2D_FMT PYUV422UVC MB16 = (0x21))
G2D_FMT_PYUV420UVC_MB16 = (0x22),
G2D_FMT_PYUV411UVC_MB16 = (0x23),
G2D FMT PYUV422UVC MB32 = (0x24),
G2D_FMT_PYUV420UVC MB32 = (0x25),
G2D_FMT_PYUV411UVC _MB32 = (0x26),
G2D_FMT_PYUV422UVC_MB64 = (0x27),
G2D_FMT_PYUV420UVC_MB64 = (0x28),
G2D_FMT PYUV411UVC MB64 = (0x29),
G2D_FMT_PYUV422UVCrMB128="(0x2A),
G2D_FMT_PYUV420UVC MB128= (0Ox2B),
G2D_FMT_PYUV411UVC MB128= (0x2C),
}g2d data fmt;

o BXZRILFA

G2D FMT ARGB8888 : alpha(8bit)R(8bit)G(8bit)B(8bit)
G2D FMT BGRA8888 : B(8bit)G(8bit)R(8bit)alpha(8bit)
G2D_FMT ABGR8888 : alpha(8bit)B(8bit)G(8bit)R(8bit)
G2D_FMT RGBA8888 : R(8bit)G(8bit)B(8bit)alpha(8bit)
G2D_FMT XRGB8888 : 24bit,RGBE8bit,alpham i EFHEFEFIOXFF
G2D FMT BGRX8888 : 24bit,BGR&8bit,alphayfEflE AT IIOXFF
G2D FMT XBGR8888 : 24bit,BGR%&8bit,alpha i fiE AT FIOXFF
G2D_FMT RGBX8888 : 24bit,RGBE8bit,alphayfEfilBFEFEFOXFF

IR © HiB2EREROBIRAR. RE—INF 13

48

(E@LMHMER

XAEER:

G2D FMT ARGB4444
G2D_FMT BGRA4444
G2D_FMT ABGR4444
G2D_FMT RGBA4444
G2D_FMT ARGB1555
G2D FMT BGRA1555
G2D_FMT ABGR1555
G2D_FMT RGBA1555

G2D_FMT RGB565
G2D_FMT BGR565

G2D FMT IYuv422

G2D_FMT_PYUV422UVC
G2D_FMT_PYUV420UVC
G2D_FMT PYUV411UVC

G2D_FMT PYUV422
G2D_FMT_PYUV420
G2D_FMT_PYUV411

G2D_FMT_PYUV422UVC MB16:
G2D_FMT_PYUV420UVC_MB16:
G2D_FMT_PYUV411UVC_MB16:
G2D FMT PYUV422UVC MB32:
G2D FMT PYUV420UVC MB32:
G2D_FMT PYUV411UVC MB32:
G2D_FMT_PYUV422UVC_MB64:
G2D_FMT_PYUV42QUVC_MB64:
G2D_FMT PYUV411UVC MB64:
G2D_FMT_PYUV422UVC MB128:,16x16 tile base planar uv combined only for input
G2D FMT PYUV420UVC MB128: 16x16 tile base planar uv combined only for input
G2D_FMT PYUV411UVC MB128: 16x16 tile base planar uv combined only for input

G2D_FMT 8BPP_MONO : 8bit per
G2D_FMT 4BPP_MONO : 4bit per
G2D FMT 2BPP MONO : 2bit per
G2D FMT 1BPP_MONO : 1bit per

G2D_FMT 8BPP_PALETTE: 8bit per
G2D FMT 4BPP_PALETTE: 4bit per
G2D_FMT 2BPP_PALETTE: 2bit per
G2D_FMT 1BPP_PALETTE:(1bit per

16x16
16x16
16x16
16x16
16x16
16x16
16x16
16x16
16x16

pixel
pixel
pixel
pixel

: Planar Yuv422
: Planar YUV420
: Planar YuUV41ll

pixel palette
pixel palette
pixel palette
pixel palette

tile
tile
tile
tile
tile
tile
tile
tile
tile

: Interleaved YUV422

mono
mono
mono
mono

base
base
base
base
base
base
base
base
base

: R(5bit)G(6bit)B(5bit)
: B(5bit)G(6bit)R(5bit)

: Planar UV combined only
: Planar UV combined only
: Planar UV combined only

planar
planar
planar
planar
planar
planar
planar
planar
planar

: alpha(4bit)R(4bit)G(4bit)B
: B(4bit)G(4bit)R(4bit)alpha
: alpha(4bit)B(4bit)G(4bit)R
: R(4bit)G(4bit)B(4bit)alpha
: alpha(1lbit)R(5bit)G(5bit)B
: B(5bit)G(5bit)R(5bit)alpha
: alpha(1lbit)B(5bit)G(5bit)R
: R(5bit)G(5bit)B(5bit)alpha

uv
uv
uv
uv
uv
uv
uv
uv
uv

4bit
4bit
4bit
4bit
5bit
1bit
5bit
1lbit

—~ e~ o~ o~~~ o~ —~
—_— — — — — — ~— ~—

only for_input
only sffor input
only ‘for|input
only for \input

combined
combined
combined
combined
combined
combined
combined
combined
combined

only
only
only
only
only
only
only
only
only

for
for
for
for
for
for
for
for
for

input
input
input
input
input
input
input
input
input

3.1.4 g2d pixel seq(version 1.0)

o {EF

g2d pixel seq BFHERGEEFT

o« EX

IR © HiB2EREROBIRAR. RE—INF

14

N O U W N -

NN NDNR R R PR PR
W NP O OO U bk WNFP O O

OO Ul WN -

NN DNDNNRRRR B 2 2 2 2 2
U WP, O WO u W~ OO

@LWIMIER

XAEER:

typedef enum {

}g2d pixel seq;

G2D_SEQ NORMAL = 0x0,
G2D SEQ VYUY = ox1,
G2D_SEQ YVYU = 0x2,
G2D_SEQ_VUVU = 0x3,
G2D_SEQ P10 = 0x4,
G2D_SEQ P01 = 0x5,
G2D_SEQ P3210 = 0x6,
G2D SEQ P0123 = 0x7,
G2D_SEQ_P76543210 = 0x8,
G2D_SEQ_P67452301 = 0x9,
G2D_SEQ_P10325476 = OXA,
G2D_SEQ P01234567 = 0xB,
G2D SEQ 2BPP BIG BIG = 0xC,
G2D SEQ 2BPP BIG LITTER = 0xD,
G2D_SEQ 2BPP_LITTER BIG = OXE,

G2D_SEQ 2BPP_LITTER LITTER = OxF,

G2D_SEQ 1BPP BIG BIG = 0x10,
G2D SEQ 1BPP BIG LITTER = 0x11,
G2D SEQ 1BPP_LITTER BIG = 0x12,

G2D_SEQ_1BPP_LITTER LITTER = 0x13,

o FXZILFR

G2D_SEQ NORMAL

//for interleaved ylivA422
G2D SEQ Vyuy
G2D_SEQ_YVYU

// for uv_comb@ned yuv420
G2D SEQ VUVU

// for 16bpp ngh
G2D_SEQ P10
G2D_SEQ P@1

G2D_SEQ P3210
G2D SEQ P0123

// for 4bpp rgb

G2D SEQ P76543210
G2D SEQ P67452301
G2D SEQ P10325476
G2D SEQ P01234567

// for 2bpp rgb
G2D_SEQ 2BPP BIG BIG

G2D SEQ 2BPP BIG LITTER :

G2D SEQ 2BPP_LITTER BIG :

15,14,13,12,11,10,9,8,7,6,

12,13,14,15,8,9,10,11,4,5,

3,2,1,0,7,6,5,4,11,10,9,8,

:«Normal sequence

: pixel O7E{E1611I
: pixel 17EfE161iL

: pixel OTE{E161l
: pixel 1fEfE161iu

// planar format or 8bpp rgb
: pixel OTE{HES8{i
1 pixel 37E{R8fi

5,4,3,2,1,0

6,7,0,1,2,3

15,14,13,12

: Planar VU combined only

IR © HiB2EREROBIRAR. RE—INF

15

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

OO0 U W N -

I I N R e e
N —= O © 00O U b WwWwhNhe—k o o

23
24
25
26
27

@ LWIWER
g MXHEER: WE

G2D SEQ 2BPP_LITTER LITTER
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

// for 1lbpp rgb
G2D SEQ 1BPP BIG BIG
31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

G2D_SEQ 1BPP_BIG LITTER
24,25,26,27,28,29,30,31,16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7

G2D_SEQ_1BPP_LITTER BIG
7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8,23,22,21,20,19,18,17, 16,31, 30,29, 28,27, 26, 25, 24

G2D_SEQ_1BPP_LITTER LITTER
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,21, 22,23,24,25,26,27,28,29,30,31

3.1.5 g2d blt flags h
o EF
g2d blt flags h EX ZJoitR(ERS

o« EX

typedef enum {
G2D_BLT NONE 0 = 0x0,
G2D_BLT BLACKNESS,
G2D BLT NOTMERGEPEN,
G2D_BLT MASKNOTPEN,
G2D BLT NOTCOPYPEN,
G2D_BLT_MASKPENNOT,
G2D_BLT_NOT,
G2D BLT XORPEN,
G2D_BLT_NOTMASKPEN,
G2D BLT MASKPEN,
G2D_BLT NOTXORPEN,
G2D BLT NOP,
G2D BLT MERGENOTPEN,
G2D BLT COPYPEN,

G2D_BLT MERGEPENNOT,
G2D_BLT MERGEPEN,

G2D BLT WHITENESS = 0x000000ff,
G2D ROT 90 = 0x00000100,
G2D ROT 180 = 0x00000200,
G2D ROT 270 = 0x00000300,
G2D ROTH = 0x00001000,
G2D ROT V. = 0x00002000,
G2D SM DTLR 1 = 0x10000000,

} g92d blt flags h;

WRAFRE © BseEREROERAE. RE—TNF

16

OO Ul WN =

NN DNDNRR R R B 22
WNPFP, OO0 Uk WwWwNDe—, OO

N O Uk W e

—_

Auwiner

g XAEER:

o AXGIIRA

G2D BLT NONE BANRIRIE

//ERSYIERAERNERS|0EXBRKIET BB KE, (JERENYIERER, ZEENERE)
G2D BLT BLACK BLACKNESS

G2D BLT NOTMERGEPEN dst = ~(dst+src)
G2D BLT MASKNOTPEN dst =~src&dst
G2D BLT NOTCOPYPEN dst =-src

G2D BLT MASKPENNOT dst =src&~dst

/ /EBFRER KIS B E R

G2D_BLT_NOT dst =~dst

G2D_BLT XORPEN dst =src”dst
G2D_BLT _NOTMASKPEN dst =~(src&dst)
G2D BLT MASKPEN dst =srcé&dst
G2D_BLT_NOTXORPEN dst =~(src”dst)
G2D_BLT_NOP dst =dst

G2D _BLT MERGENOTPEN dst =~src+dst
G2D_BLT COPEPEN dst =src
G2D_BLT_MERGEPENNOT dst =src+~dst
G2D_BLT_MERGEPEN dst =src+dst
//ERSYRERERPRS| 1A XN SR BARER XE (W FREYIZR SRR , X SPre EE)

G2D_BLT WHITE WHITENESS

3.1.6 g2d _image(version 1.0)

o {EF
g2d image AT image BHER

e EX

typedef struct {

_u32 addr[3];
~u32 w;
u32 h;

agd_data_fmt format;
g2d pixel seq pixel seq;
}g2d _image;

o BXZRILFA

addr[3]: E&biREMNE, FTFUV combined, addr[0,1]E%, planarzt&addr([0,1, 2183, Hfttaddr[0]
BN

w: ST

EGRmIAS

>

IR © HiB2EREROBIRAR. RE—INF

17

4
5

OO Ul WN =

e e
B W N~ O

—_
[@)]

01O Ul WN

el
N — O ©

Auwiner

MHER: WE

format: EfgmibuffertIBER, ¥Mg2d data_fmt
pixel seq: Emibufferty&ERFS, ¥Mg2d pixel seq

3.1.7 g2d image enh

o EF

g2d_image enh FEHAREFNES. FHtil, E5M Clip &2, BENFRE,

e EX

typedef struct {

int bbuff;
~u32 color;
g2d fmt enh format;
_u32 laddr([3];
_u32 haddr([3];
_u32 width;
_u32 height;
_u32 align[3];
g2d rect clip rect;
~u32 gamut;
int bpremul;
u8 alpha;

gizdialphafmode;enh mode;
} 92d image enh;

o FXZILFA

54l 1EF

format : B

laddr AR AIE
haddr 1 ERRE Atk
width : BEE (in pixel)
height : BSE (in pixel)
pitch : Bufferfpitch
clip rect : ROI%EF

gamut : B

bpremul : BB AR

alpha : HEalphaf&

mode : alphatZxikE

3.1.8 g2d fmt enh

o {EF

WA © BSEERERHERAE. RE—TF

18

N O O W N

N NN NNNNNRR R R R R el
NO U WNRFR, OO0 U R WNRL, OO ®

@LWIMIER

MHER: WE

g2d_fmt enh TR G2D RRZFFAIET

e EX

typedef enum{

G2D_FORMAT ARGB8888,
G2D_FORMAT ABGR8888,
G2D_FORMAT RGBA8888,
G2D FORMAT BGRA88838,
G2D FORMAT XRGB8888,
G2D_FORMAT XBGR8888,
G2D_FORMAT RGBX8888,
G2D_FORMAT BGRX8888,
G2D FORMAT RGB888,

G2D FORMAT BGR888,

G2D FORMAT RGB565,
G2D_FORMAT BGR565,
G2D_FORMAT ARGB4444,
G2D_FORMAT ABGR4444,
G2D FORMAT RGBA4444,
G2D FORMAT BGRA4444,
G2D_FORMAT ARGB1555,
G2D_FORMAT ABGR1555,
G2D_FORMAT RGBA5551,
G2D FORMAT BGRA5551,
G2D FORMAT ARGB21601010,
G2D FORMAT ABGR2101010,
G2D FORMAT RGBA1010102,
G2D_FORMAT BGRA1010102,

/* invailed foF UI channel &y

G2D FORMAT IYUV422 VOY1UOYO = 0x20,
G2D FORMAT/IYUV422 Y1VOYOUO,

G2D FORMAT IYUV422 UQY1VOYO,
G2D_FORMAT IYUV422 Y1UBYOVO,

G2D_FORMAT_YUV422UVC_V1U1VeUo,
G2D_FORMAT 'YUV422UVC_U1V1UGVO,
G2D _FORMAT YUV422 PLANAR,

G2D_FORMAT_YUV420UVC_V1U1VeUu® = 0x28,
G2D FORMAT_YUV420UVC_Ulviueve,
G2D_FORMAT_YUV420 PLANAR,
G2D_FORMAT_YUV411UVC_V1U1Veue = 0x2c,

G2D_FORMAT_YUV411uvC_U1viueve,
G2D_FORMAT_YUV411l PLANAR,

G2D_FORMAT Y8 = 0x30,

/* YUV 10bit format */
G2D FORMAT YVU10 PO10 = 0x34,

G2D_FORMAT YVU10 P210 = 0x36,

G2D_FORMAT YVU10 444
G2D FORMAT YUV10 444
}g2d _fmt_enh;

0x38,
0x39,

WRAFRE © BseEREROERAE. RE—TNF

19

w N =

D U1

10
11
12

15

@LWIMIER

MHER: WE

3.1.9 g2d rop3 cmd flag

o M
g2d rop3 cmd flag AFEX = TR (ERD

EX

typedef enum {
G2D ROP3 BLACKNESS = 0x00,
G2D ROP3 NOTSRCERASE = 0x11,
G2D ROP3 NOTSRCCOPY = 0x33,
G2D ROP3 SRCERASE = 0x44,
G2D_ROP3 DSTINVERT = 0x55,
G2D ROP3 PATINVERT = Ox5A,
G2D ROP3 SRCINVERT = 0x66,
G2D ROP3 SRCAND = 0x88,
G2D ROP3 MERGEPAINT = OxBB,
G2D ROP3 MERGECOPY = 0xCO,
G2D_ROP3_SRCCOPY = 0xCC,
G2D_ROP3_SRCPAINT = OxEE,
G2D ROP3 PATCOPY = 0xFO,
G2D_ROP3 PATPAINT = OxFB,
G2D ROP3 WHITENESS _«= OxFF,
}g2d _rop3 cmd flag;
o FRLEREA
G2D ROP3 BLACKNESS dst = BLACK
G2D ROP3 NOTSRCERASE dst = (NOT src) AND (NOT dst)
G2D ROP3 NOTSRCCOPY. dst = (NOT_s'rc) RREF X ISER R , # N E B AR e X
G2D ROP3 SRCERASE dst =.sr€ AND (NOT dst)
G2D ROP3 DSTINVERT dst = (NOT dst)
G2D ROP3 PATINVERT dst = pattern XOR dst DB EAAREMRE (XOR) BERHEFER A BARER
XigEnE &+
G2D ROP3 SRCINVERT dst = src XOR dst WS EARREMZE (XOR) RIERTIG IR B ARIER XIHER
BaH
G2D_ROP3_SRCAND dst = srcAND dst DBEE R SIRERIE RN B XSG E S H
G2D_ROP3_MERGEPAINT dst = (NOT src) OR dst :@IfFERM/REMND(OR)IRIERE R MR XIHHIER

B5BEREKEEESH

G2D_ROP3 MERGECOPY dst = (src AND pattern)
G2D_ROP3_SRCCOPY dst = src
G2D ROP3_SRCPAINT dst = src OR dst

L
G2D ROP3_PATCOPY dst = pattern
G2D_ROP3_PATPAINT dst = DPSnoo

dst = WHITE

G2D_ROP3_WHITENESS

BESHEEINEESH , ARERORIRENSIZRENERS BB XENNEESH.

DRRAER X EEE N2 B AR X i
DESEAMREAIE (OR) BRIFFIRRAN B AR XIEER®

D@ ERR/RERYEL (OR) BRIERTGIRIERZ KIS AR FSRIER

WRAFRE © BseEREROERAE. RE—TNF

20

@LWIMIER

XAEER:

3.1.10 g2d bld cmd flag

o {EF

g2d bld cmd flag X BLD &<

e EX

1] typedef enum {

2 G2D BLD CLEAR

3 G2D BLD COPY

4 G2D BLD DST

5 G2D BLD SRCOVER
6 G2D_BLD DSTOVER
7 G2D BLD SRCIN

8 G2D BLD DSTIN

9 G2D BLD SRCOUT
10 G2D BLD DSTOUT
11 G2D BLD SRCATOP
12 G2D_BLD DSTATOP
13 G2D BLD XOR
14 G2D CK SRC
15 G2D CK DST
16| }92d bld cmd flag;

0x00000001,
0x00000002,

= O0x00000003,

0x00000004,
0x00000005,
0x00000006,
0x00000007,
0x00000008,
0x00000009,
0x0000000a,
0x0000000b,
0x0000000c,

= 0x00010000,

0x00020000,

3.1.11 g2d ck

o {EF

g2d _ck EXT colorkey 121FHIE%L

e EX

typedef struct {
int match _rule;
~u32 max_color;
__u32 min_color;
}g2d ck;

gk W N -

o FXZRILFA

2

1| match rule Zmatch rulef3fBEt, Color Min=<Color<=Color MaxZiELE M
Ymatch_rule &R, Color>Color Max or Color <Color MinFkmi#ELEERM

IR © HiB2EREROBIRAR. RE—INF

21

3
4

U W -

B W N

s W N e

Auwiner

MHER: WE

ck_max_color Color Max
ck min _color Color Min

3.1.12 g2d alpha mode enh

o {EF

g2d alpha mode enh T X#1T alpha blend ##fEBY, %8 alpha mode

e EX

typedef enum{
G2D_PIXEL ALPHA,
G2D_GLOBAL ALPHA,
G2D_MIXER ALPHA,

}g2d_alpha mode enh;

M5 1EM

G2D_PIXEL ALPHA /alpha
G2D_GLOBAL ALPHA Eialpha
G2D MIXER ALPHA E&alpha

3.1.13 g2d _color gmt

o EF
g2d_color gmt EXHITIHIRIER, EIFMEETIE

e EX

typedef enum{
G2D BT601,
G2D BT709,
G2D BT2020,

}g2d color gmt;

WA © BSEERERHERAE. RE—TF

22

—_

U WN =

B W N -

Auwiner

XAEER:

3.1.14 g2d scan order(version 1.0)

o {EF

g2d_scan_order JE Xi#4T alpha blend 12{ERY, FEFHEGIFTER

e EX

enum g2d scan_order {

G2D_SM_TDLR = 0x00000000,
G2D_SM_TDRL = 0x00000001,
G2D_SM DTLR = 0x00000002,
G2D_SM DTRL = 0x00000003,

};

o ARFIEA

G2D SM TDLR Top to down, Left to right
G2D SM DTLR Down to top, Left to right
G2D SM TDRL Top to down, Right to left
G2D _SM DTRL Down to top, Left to. right

3.1.15 g2d blt(version 1.0)
o M

g2d_blt BF—NRMBRMYE blt HER

e EX

typedef struct {
g2d blt flags flag;
g2d image src_image;
g2d rect src_rect;
g2d_image dst image;
_s32 dst x;
_s32 dst y;
_u32 color;
_u32 alpha;

}g2d blt;

o BXZILFA

IR © HiB2EREROBIRAR. RE—INF

23

NO Uk WwN -

N OO W N e

g W e

@LWIMIER

XAEER:

flag : block transfertr, 3#0g2d blt flags
src_image : FE&ES, i¥g2d_image

dst_image : BTERER, i¥Mg2d_image

dst x 1 BARERE Efx

dst y . BiriERE Efy

color : colorkeyEita

alpha : HEalphafd

3.1.16 g2d fillrect(version 1.0)

o R

g2d_fillrect AF##EA— fill rectangle SEHIER

o« EX
typedef struct {
g2d fillrect flags flag;
g2d_image dst _image;
g2d rect dst rect;
_u32 color;
~u32 alpha;
}g2d fillrect;
o AYGIUEA
flag : HAEEWATE, #0g2d fillrect flags
dst_image : BirEZESR, i#g2d _dimage
dst_rect : BAMERGEER, x/y/i/h-ELfax/ELfy/%/E
color T EHREG
alpha : Ealphaf&

3.1.17 g2d stretchblt(version 1.0)

o EF

g2d stretchblt AF##ER— stretchblt BHER

e EX

IR © HiB2EREROBIRAR. RE—INF

24

OO Ul WN -

©

N O U W N

N O Uk N e

U W N -

Auwiner

MHER: WE

typedef struct {
g2d blt flags flag;
g2d_image src_image;
g2d_rect src_rect;
g2d_image dst _image;
g2d rect dst rect;
~u32 color;
_u32 alpha;
} g2d stretchblt;
o AYGIUEA
flag : block transferir&, i#g2d blt flags
src_image : BFE&EE, i¥Kig2d image
src_rect : BERER, x/y/wh-EEfx/ELRy/%/E
dst_image : BfrE&ER, #Mg2d image
dst_rect : BARERER, x/y/w/h-ELfax/ELRy/R/E
color : colorkeyEita
alpha : Halphaf&

3.1.18 g2d blt h

o R

g2d blt h LA foreground H4EMEY ROP2 Ab3E,

e EX

typedef struct {

g2d blt flags h flag _h;

g2d _image enh src_image h;

g2d_image enh dst image h;

_u32 color;

_u32 alpha;
}g2d_blt_h;

flag h
src_image_h
dst image h
color

alpha

: blLtiRfEflaginis, 1E5ahRInG
: REGER, IEERVEGSE,1¥0g2d_image enh
: BIREGER, ERRNEGSH
: colorkeyHita
: @alphafd

WA © BSEERERHERAE. RE—TF

25

YU WN -

B W N -

@LWIMIER

MHER: WE

3.1.19 g2d bld(version 1.0)

o {EF

g2d bld SLFIEEIRY BLD # colorkey #{E,

o EX
typedef struct {
g2d bld cmd flag bld cmd;
g2d_image enh dst image h;
g2d_image_enh src_image h;
g2d ck ck para;
}g2d_bld;/* blending enhance */

o FRFIAA

bld cmd : blendingfUiR{Eflagins, HIRARITS
src_image_h : FEKEER, EERNEGSHK
dst_image h : BirEGELR, ILRIRAEEGS

ck _para : colorkeyZ#k

3.2 KR

3.2.1 1.0 fRA3ZEO

3.2.1.1 G2D_CMD BITBLT

o {EA: BITBLT LMW ERTEIEIEE, LIlRENEIBR; FRIRRBNBR; FHMBR

f# alpha blending/colorkey /53 D1 2| B 15
o [REY:

int ioctl(int *fd, int cmd, unsigned long arg);

o fd: G2D i&HEXHIRIRF
e cmd: G2D CMD BITBLT

WA © BSEERERHERAE. RE—TF

26

OO U WN -

e e e e e
OO ULk WN P OO

19

@LWIIWER

XAEER:

e arg: arg A g2d blt £i{kisst

o 0: FIH
o Hith: X

o Hf:

g2d rect src_rect;
g2d blt blit;
~s32 dst_x, dst y;

image front.addr[0]
image front.w

image front.h

image front.format
image front.pixel seq

scn.addr[0]
scn.w

scn.h

scn. format
scn.pixel seq
src_rect.x
src_rect.y
src_rect.w
src_rect.h

dst_x
dst y

blit.color = 0xee8899;
blit.alpha = 0x73;

/* 1&EIRimgaefliR rectiu
blit.src_image.addr[0]
blit.src_image.w
blit.src_image.h
blit.src_image.format
blit.src_image.pixel seq
blit.src_rect.x
blit.src_rect.y
blit.src_rect.w
blit.src_rect.h

blit.dst image.addr[0]
blit.dst image.w
blit.dst_image.h
blit.dst image.format
blit.dst image.pixel seq
blit.dst x

blit.dst y

/* BIN/HiHimage buffer */
g2d image image front,scn;

mem_in;

800;

480;

G2D FMT ARGB8888;
G2D SEQ NORMAL;

mem_out;

800;

480;

G2D FMT RGBA8888;
G2D SEQ NORMAL;
0;

05

480;

272;

0;
0;

/* REBITBLT flagirs: fsmalphaflikFEEE F/
blit.flag = G2D_BLT PIXEL ALPHA| G2D BLT FLIP HORIZONTAL;

image front.addr[0];
image front.w;

image front.h;

image front.format;
image front.pixel seq;
src_rect.x;
src_rect.y;
src_rect.w;
src_rect.h;

/* &BBirimgaef1Bifrrect */

scn.addr[0];
scn.w;

scn.h;

scn. format;
scn.pixel seq;
dst x;

dst vy;

IR © HiB2EREROBIRAR. RE—INF

27

51
52
53

OO Ul W N =

NN DNDNDNRRR R B 2 2 2 2 2
B W NEFE, O OO0 U s WNEF~RL OO

@LWIIWER

MHER: WE

if(ioctl(g2d fd, G2D CMD BITBLT, &blit)<0)

{

printf("G2D_CMD BITBLT failed!\n");

3.2.1.2 G2D _CMD FILLRECT

o EA: B—MEENERBELKREN AT, FRFBESSIAREEMBIRMY alpha blending

o JREL:
int ioctl(int *fd, int cmd, unsigned long arg);
o B
o fd: G2D IEBEXHIRIRFT
e cmd: G2D CMD FILLRECT
e arg: arg A g2d_fillrect £5#9{AgH
e IR[E]:
e 0: XIS
o Hfth: XK
o 55
/* Htimage buffer */
g2d _image scn;
g2d rect dst rect;
g2d fillrect fillrect;
/* I&EBFILLRECTHRE Emalipha™>/
fillrect.flag = G2D_FIL PLANE ALPHA;
fillrect.color = OxFF345678;
fillrect.alpha = 0x40;
/* &BHBtrimagef1B+rrect */
fillrect.dst image.addr[0] = scn.addr[0];
fillrect.dst image.w = SCNn.w;
fillrect.dst image.h = scn.h;
fillrect.dst image.format = scn.format;
fillrect.dst image.pixel seqg= scn.pixel seq;
fillrect.dst rect.x = dst_rect.x;
fillrect.dst rect.y = dst _rect.y;
fillrect.dst rect.w = dst_rect.w;
fillrect.dst_rect.h = dst_rect.h;
if (ioctl(g2d fd, G2D CMD FILLRECT, &fillrect) < 0) {
printf("G2D CMD FILLRECT failed!\n");
}

WRINFE © HRB2ERRRNERAR. RE—IF

28

Auwiner

XAEER:

3.2.1.3 G2D_CMD_STRETCHBLT

o {EM: STRETCHBLT R¥MMERTEBENEE, HLINREKREBiFA/NGENRBR,
BREBEIERANEEBRNE,; REHREIBirAK/ G BHRMH alpha blending/colorkey ##

NEIBAR
o [REL:
int ioctl(int *fd, int cmd, unsigned long arg);
o B¥
o fd: G2D REXMHATIRTF
e cmd: G2D CMD STRETCHBLT
e arg: arg A g2d_stretchblt £#{&gs
o JR[O]:
e 0: FXIN
o Hfth: KK
o Hf:
/* HitHimage buffef*/
g2d_image image /front,scn;
g2d_rect src_rect,dst_rect;
g2d stretchblt str;
image front.addr[0] = mem_in;
image_front.w = 800;
image front.h = 480;
image front.format = G2D_FMT<PYUV420UVC;
image front.pixel segw..= G2D<SEQ NORMAL;
image front.addr[1] = mem_in+ image front.w*image front.h;
scn.addr[0] = mem out;
scn.w = 800;
scn.h = 480;
scn.format = G2D_FMT ARGB8888;
scn.pixel seq = G2D SEQ NORMAL;
src_rect.x =0;
src_rect.y = 0;
src_rect.w = 480;
src_rect.h = 272;
dst rect.x = 17;
dst rect.y = 100;
dst rect.w = 480;
dst rect.h = 272;
/* ZESTRETCHBLTHRE : i smalphaflfiedt90E */

str.color

str.flag = G2D BLT PIXEL ALPHA|G2D BLT ROTATE90;

= 0xee8899;

IR © HiB2EREROBIRAR. RE—INF

29

@LWIIWER

XAEER:

30| str.alpha = 0x73;

32| /* kERimagefiRrect */
33| str.src_image.addr[0]
34| str.src_image.addr[1]
35| str.src_image.w

36| str.src_image.h

37| str.src_image.format

38| str.src_image.pixel seq

image front.addr([0];
image front.addr([1];
image front.w;

image front.h;

image front.format;
image front.pixel seq;

39| str.src_rect.x = src_rect.x;
40 | str.src_rect.y = src_rect.y;
41| str.src_rect.w = src_rect.w;
42| str.src rect.h = src_rect.h;

44 | /* &EBfrimagefBirrect */

45 str.dst _image.addr[0] scn.addr[0];
46 | str.dst image.w scn.w;

47| str.dst _image.h = scn.h;

48 | str.dst image.format scn.format;
49| str.dst image.pixel seq = scn.pixel seq;

50| str.dst _rect.x = dst_rect.x;

51| str.dst rect.y = dst_rect.y;

52| str.dst rect.w = dst_rect.w;

53| str.dst_rect.h = dst rect.h;

54

55| if(ioctl(g2d_fd, G2D_CMD STRETCHBLT, &str) < 0)
56] {

57 printf("G2D_CMD_STRETCHBLT failed!\n");
581}

3.2.1.4 G2D_CMD_PALETTE_TBL

e EF: PALETTE TAL REECIMMZIDERKRS ANEH SDRAM, R EERIEZEONREGE

format & EA palette IRXNA RESLFEAXEZHL
o R

1 [int ioctl(int *fd, int cmd, unsigned long arg);

o B

o fd: G2D &EXHARRTT
e cmd: G2D CMD PALETTE TBL
e arg: arg A g2d palette £{kisst

e IR[O]:

e 0: XIS
o Hfth: KK

o H:

IR © HiB2EREROBIRAR. RE—INF

30

N O U W N -

_ = =
N — O ©O© ®

Auwiner

XAEER:

unsigned long length;

/* BEIEREEAE */

unsigned long palette[0x100];
g2d palette pal;

pal->pbuffer = &palette;
pal.size = length;

if(ioctl(g2d fd, G2D CMD PALETTE TBL, &pal)<0)
{

printf("G2D CMD PALETTE TBL failed!\n");
)

3.2.2 2.0 hrA#O

3.2.3 G2D CMD BITBLT H

¢ PROTOTYPE
(int ioctl(int fd, int cmd, void *arg))
¢ ARGUMENTS

cmd G2D/CMD_BITBLT_H

arg argug2d_blt hZEf{Asst
e RETURNS

M 0, KM KKS
e DESCRIPTION

S RRENER. BREEE, KU foreground H48HEY ROP2 b,

¢ DEMO

/* TEEEThEE */

blit.flag h = G2D_ROT 90;

blit.src_image h.addr[0] = saddr[0];

blit.src _image h.format = G2D FORMAT ARGB8888;

blit.src_image h.mode = G2D GLOBAL ALPHA;

blit.src image h.clip rect.x = 0;

blit.src_image h.clip rect.y = 0;

blit.src_image h.clip rect.w = 1920;

blit.src_image h.clip rect.h = 1080;

blit.src _image h.width = 1920;

blit.src_image h.height = 1080;

blit.src_image h.alpha = 0Oxff;

blit.dst image h.addr[0] = daddr[0O];

IR © HiB2EREROBIRAR. RE—INF 31

14
15
16
17
18
19

BB PRBRPRPDPRPRWWWWWWWWWWNRNDNDDNDNDNDDNDNDDNDNDLDN
OO U WNRPFROOWONOOU PR WNR, OO U R WNRO

49

65
66
67

69
70
71
72
73

@LWIMIER

XAEER:

blit.dst image h.format = G2D FORMAT ARGB8888;
blit.dst image h.mode = G2D GLOBAL ALPHA;
blit.dst image h.clip rect.x = 0;

blit.dst_image h.clip_rect.y = 0;
blit.dst image h.clip rect.w = 1920;
blit.dst image h.clip rect.h = 1080;

blit.dst image h.alpha = Oxff;
blit.dst image h.width = 1920;
blit.dst_image_h.height = 1080;

if(ioctl(g2d fd, G2D CMD BITBLT H ,(unsigned long) (&blit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
__LINE_, FILE , FUNCTION);
return -1;

}

/* ZEIRThEE */

blit.flag h = G2D BLT NONE 0;

blit.src_image h.addr[0] = saddr[0];
blit.src_image h.format = G2D_FORMAT ARGB8888;
blit.src_image h.mode = G2D GLOBAL ALPHA;
blit.src _image h.clip rect.x = 0;
blit.src_image h.clip rect.y = 0;
blit.src_image h.clip rect.w = 1280;
blit.src_image h.clip_rect.h = 800;
blit.src_image h.width = 1280;

blit.src_image h.height = 800;

blit.src_image h.alpha = Oxff;
blit.dst image h.addr[0]«= daddr[0];
blit.dst image h.format = G2D FORMAT ARGB8888;
blit.dst_image h.mode = G2D_GLOBAL ALPHA;
blit.dst_image h.clip rect/x = 0;

blit.dst image h.clip rect.y = 0;
blit.dst image/h.clip rect.w =+1920;
blit.dst image h.clip rect.h = 1080;

blit.dst_image h.alpha = Oxff;
blit.dst_image h.width = 1920;
blit.dst image h.height = 1080;

if(ioctl(g2d fd, G2D CMD BITBLT H", (unsigned long) (&blit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
__LINE_, FILE_, FUNCTION);
return -1;

}

/* BT */

blit.flag _h = G2D_BLT NONE_0;

blit.src_image h.addr[0] = saddr[0];
blit.src_image h.format = G2D FORMAT ARGB8888;
blit.src image h.mode = G2D GLOBAL ALPHA;
blit.src_image h.clip rect.x
blit.src _image h.clip rect.y
blit.src_image h.clip rect.w
blit.src_image h.clip rect.h
blit.src_image h.width = 1280;
blit.src_image h.height = 800;
blit.src_image h.alpha = 0xff;
blit.dst_image_h.addr[0] = daddr[0];

LI [R |
[l N <IN O]
O N ~- ~-
©
-~ o

IR © HiB2EREROBIRAR. RE—INF

32

@LWIMIER

XAEER:

blit.dst_image h.format = G2D_FORMAT_YUV420UVC_V1U1lVeuo;
blit.dst image h.mode = G2D GLOBAL ALPHA;
blit.dst image h.clip rect.x = 0;

blit.dst_image h.clip_rect.y = 0;
blit.dst image h.clip rect.w = 1280;
blit.dst image h.clip rect.h = 800;

blit.dst image h.alpha = Oxff;
blit.dst image h.width = 1280;
blit.dst_image h.height = 800;

if(ioctl(g2d fd, G2D CMD BITBLT H ,(unsigned long) (&blit)) < 0)
{
printf("[%d][%s][%s]G2D CMD BITBLT H failure!\n",
__LINE_, FILE , FUNCTION);
return -1;

}

3.2.4 G2D CMD BLD H

e PROTOTYPE

(int ioctl(int fd, int cmd, void *arg))

¢ ARGUMENTS
cmd G2D/CMD_BLD_H
arg arg/ig2d bld&iafkigst

¢ RETURNS
FXTh: 0, KW KM=

e DESCRIPTION
LI ATEERY BLD(porter-duff) 11

¢ DEMO
blend.bld cmd = G2D BLD COPY;
blend.src_image h.mode = G2D_GLOBAL_ALPHA;
blend.src _image h.format = G2D FORMAT ARGB8888;
blend.src _image h.alpha = 128;
blend.src_image h.clip rect.x = 0;
blend.src image h.clip rect.y = 0;
blend.src_image h.clip rect.w = 1280;
blend.src image h.clip rect.h = 800;
blend.src_image h.width = 1280;
blend.src image h.height = 800;
blend.dst image h.mode = G2D GLOBAL ALPHA;
blend.dst image h.format = G2D FORMAT ARGB8888;
blend.dst image h.alpha = 128;

IR © HiB2EREROBIRAR. RE—INF 33

14
15
16
17
18
19
20
21
22
23
24
25
26

N O U W N

e e e e
NOY Uk WD RO O

@LWIMIER

XAEER:

blend.dst image h.clip rect.x
blend.dst image h.clip rect.y
blend.dst image h.clip rect.w = 1280;
blend.dst_image h.clip_rect.h = 800;
blend.dst image h.width = 1280;
blend.dst image h.height = 800;

i
o]

{

printf("[%d][%s][%s]G2D CMD BLD H failure!\n",
_ LINE_, _ FILE_ , FUNCTION_);
return -1;

}

if(ioctl(g2d fd, G2D CMD BLD H , (unsigned long) (&blend)) < 0)

3.2.5 G2D CMD MASK H

¢ PROTOTYPE

(int ioctl(int fd, int cmd, void *arg)

¢ ARGUMENTS

cnd G2D_CMD_MASK H
arg arg’g2d maskblt&a{ksst

¢ RETURNS

FXIh: 0, KK KM=
e DESCRIPTION

TRIEHE IS E RN M2 (ERDXT src. pdttern #1 dst #H1TIZ1E,
e DEMO

HIFERFREE dst .

mask.back flag = G2D_ROP3 NOTSRCCOPY;
mask.fore flag = G2D_ROP3 SRCINVERT;
mask.src_image h.clip rect.x = 0;
mask.src_image h.clip rect.y = 0;
mask.src_image h.clip rect.w = 1280;
mask.src_image h.clip_rect.h = 800;
mask.src_image h.width = 1280;
mask.src_image h.height = 800;
mask.src_image h.mode = G2D GLOBAL ALPHA;
mask.dst image h.clip rect.x = 0;
mask.dst image h.clip rect.y
mask.dst_image h.clip_rect.w
mask.dst image h.clip rect.h
mask.dst image h.width = 1280;
mask.dst image h.height = 800;
mask.dst image h.mode = G2D GLOBAL ALPHA;

i n
0~ o
O N ~-
©
)

mask.mask image h.clip rect.x = 0;

IR © HiB2EREROBIRAR. RE—INF

34

18
19
20
21
22
23
24
25
26
27
28
29

@ LWIWER
g MXHEER: WE

mask.mask image h.clip rect.y = 0;
mask.mask image h.clip rect.w = 1280;
mask.mask _image h.clip rect.h = 800;
mask.mask_image h.width = 1280;
mask.mask image h.height = 800;
mask.mask image h.mode = G2D GLOBAL ALPHA;
mask.ptn_image h.clip rect.x = 0;

mask.ptn image h.clip rect.y = 0;
mask.ptn _image h.clip rect.w = 1280;
mask.ptn image h.clip rect.h = 800;

mask.ptn image h.width = 1280;

mask.ptn_image h.height = 800;
mask.ptn image h.mode = G2D GLOBAL ALPHA;
mask.src_image h.alpha = Oxff;

mask.mask_image h.alpha = Oxff;

mask.ptn_image h.alpha = Oxff;
mask.dst image h.alpha = Oxff;

mask.src_image h.format = G2D FORMAT ARGB8888;
mask.mask image h.format = G2D FORMAT ARGB8888;
mask.ptn _image h.format = G2D FORMAT ARGB8888;
mask.dst image h.format = G2D FORMAT ARGB8888;

if(ioctl(int fd, G2D CMD MASK H , (unsigned long) (&mask)) < 0)

{

printf("[%d][%s][%s]G2D CMD MASK H failure!\n", LINE , FILE ,«FUNCFION);
return -1;

}

3.3 #HtabiEREz

struct mixer para {
g2d operation flag op flag;
g2d blt flags h flag hj;
g2d rop3 cmd flag back flag;
g2d rop3 cmd flag fore flag;
g2d_bld_cmd flag bld_cmd;
g2d_image enh ‘src imagesh;
g2d_image enh dst image h;
g2d image enh ptn image h;
g2d_image enh mask image h;
g2d ck ck para;

}i

typedef enum {
OP_FILLRECT = 0x1,
OP BITBLT = 0x2,
OP BLEND = 0x4,
0P_MASK = 0x8,
OP_SPLIT MEM = 0x10,
} 92d operation flag;

struct mixer para @ RCQ #tABRIZOEAE, AJUBRRTE—1TKA, HEMGER

#HZHREmEAER, struct mixer para BZBIREHEOLEHREAN—NEE, WA 2 FR:

WRAFRE © BseEREROERAE. RE—TNF

(Auvwinwer s
XAEER: W

& 3-1: mixerpara

FRUAMMRE] LUR#t A2 O el EEE TR ORI, RBIRREFN RIS g2d_operation_flag

BPAT. ea
3.3.1 G2D CMD MIXER TASK ‘N

e PROTOTYPE

(int ioctl(int

¢ ARGUME

cmd:

arg[o]: BENXMHIRAFargismmixer paraigst, #OERIEMRIEAIEH

arg[1]: EHTERENMNKE, KTETFL

e RETURN

(mw: 0, KM KKS)

RAREMNER, mEERY mixer para ¥, FiFFHNEALRE, FELENEEGSAE
MAREERE, FREFNEGEREAFEERGE.

THEEHAIES K 16 MR, HF 4 BiE rgb B4R, 6 MZ Y8 RIB4EM, 6 ME nvl2
P8

IR © HiB2EREROBIRAR. RE—INF 36

N O U W N

W W INDNDNNDNDNMDNDNDNNNDNRRRPR PR PR PR P 2 2
— O OO N ULdkd WNRFP O OWWOWNNOU s WP O O

w

2
33

@LWIMIER

MR

%%

z22

=

#define RGB_IMAGE NAME "../../pic/c1080 good.rgb"

#define Y8 _IMAGE_NAME “../../pic/en dmabuf bike 1280x720 220 Y8.bin"
#define NV12_IMAGE NAME "../../pic/bike 1280x720 220.bin"

#define FRAME TO BE PROCESS 16

/*4 rgb convert 6 Y8 convert 6 yuv420 convert*

unsigned int out width[FRAME TO BE PROCESS] = {
192, 154, 108, 321, 447, 960, 241, 320,
1920, 1439, 1280, 1920, 2048, 720, 800, 480}

unsigned int out height[FRAME TO BE PROCESS] = {

struct test info t
{

struct mixer para info[FRAME_TO BE PROCE

Int main()

{

test info.info[0@].flag h = G2D BLT NONE H;
test info.info[0].op flag = OP BITBLT;
test info.info[0].src_image h.format = G
test info.info[0@].src_image h.width = 19
test info.info[0@].src_image h.height =1
test info.info[0].srewimage h.clip rect.
test_info.info[@].src_image h.clip_rect:
test info.info[0].src _image h.cldp rect.
test infoiinfo[0].src imagegh.clip rect.
test info.info[0]:src image h.color =
test info.info[0].src image h.mode = G2D
test_info.info[0].src’ image h.alpha =
test /info.info[@].src_image h.align[0] =
test info.info[@].src image h.align[1l] =
test info.info[0].src_image hjalign[2]

test _info.info[0].dst imagé h.format = G
test_info.info[0].dst_image h.width = 80
test info.info[@].dst image h.
test info.info[0].dst image h.
test info.info[0].dst image h.
test info.info[0].dst image h.
test info.info[0@].dst image h.clip rect.
test info.info[0].dst image h.color =
test info.info[0].dst image h.mode = G2D
test info.info[0].dst image h.alpha = 25
test info.info[0].dst image h.align[0] =
test _info.info[0].dst _image h.align[1]
test info.info[0].dst image h.align[2]
for (i = 0; i < FRAME_TO BE PROCESS; ++i) {
memcpy (&test _info.info[i], &test

clip rect.
clip rect.
clip_rect.

/

108, 87, 70, 217, 213, 640,
840, 240, 1080, 777, 800, 1080,
2048, 480, 480, 240};

SS1;

2D FORMAT RGB888;
20;

080;

-

y = 05

w = 1920;

h = 1080;

Oxee8899;

 PIXEL ALPHA;

Oxaa;

i n n
o O O

2D_FORMAT RGB88S8;
0;

height = 480;

X = 0;
y =0;
w 1920;
h = 1080;

0xee8899;

 PIXEL ALPHA;
5;

0;

0;

0;

_info.info[0],

sizeof(struct mixer para));

test info.info[i].dst image h.width = out width[i];

test_info.info[i].dst_image h.height =
test info.info[i].dst image h.clip rect.w =
test info.info[i].dst image h.clip rect.h =
if (1 < 4) {

out height[il];
out_width[i];
out height[i];

IR © HiB2EREROBIRAR. RE—INF

37

61

62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79

80

90
91

92

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

@LWIMIER
: SHER: B

test info.out size[i] = test info.info[i].dst image h.width *
test info.info[i].dst image h.height * 3;

test info.info[i].src_image h.format = G2D FORMAT BGR888;

test _info.info[i].src_image h.width = 1920;

test info.info[i].src_image h.height = 1080;

test info.info[i]l.src _image h.clip rect.w = 1920;

test info.info[i].src_image h.clip rect.h = 1080;

test info.in size[i] = 1920*1080*3;

snprintf(test info.src_image name[i], 100, "%s",RGB_IMAGE NAME);

} else if (i < 10) {

test info.out size[i] = test info.info[i].dst image h.width *
test info.info[i].dst image h.height;

test info.info[i]l.src image h.format = G2D FORMAT Y8;

test info.info[i].src_image h.width = 1280;

test info.info[i].src_image h.height = 720;

test info.info[i].src_image h.clip rect.w = 1280;

test info.info[i].src_image h.clip rect.h = 720;

test info.in size[i] = 1280*720;

snprintf(test info.src _image name[i], 100, "%s",Y8 IMAGE NAME);

} else {

test_info.out_size[i] = test_info.info[i].dst_image h.width *
test info.info[i].dst image h.height * 2;

test info.info[i].src image h.format =
G2D_FORMAT_YUV420UVC_U1V1UBVO;

test info.info[i].src_image h.width = 128053

test info.info[i].src_image h.height = 720;

test_info.info[i].src_image_h.clip_rect.w =_1280;

test info.info[i].src_image h.clip rect.h = 720;

test_info.in size[i] = 1280%720%2;

snprintf(test info.srchimage name[i], 100, "%s",NV12 IMAGE NAME);

}

ret = ion memory request(&test info.dst ion[i], 1, NULL, test info.
out size[i]);

test info.info[i].dst image h.fd = test info.dst ion[i].fd data.fd;//rtos-
hal VIR REFHHERTd, RESESOY IR, HigBIF RS

test info.info[i].dst image h.format = test info.info[i].src_image h.
format;
ret = ion_memory_ request(&test_info.src_ion[i], 0, test_info.
src_image name[i], test info.infsize[i]);
test info.info[id.src_image h.fd = test info.src_ion[i].fd data.fd;//rtos-
ha LR RYIREH A 32 e BT (2 o 0 IR AL, FHIS BRI
}
arg[0] = (unsigned long)test info.info;
arg[1] = FRAME TO BE PROCESS;
if (ioctl(g2d fd, G2D CMD MIXER TASK, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD MIXER TASK failure!\n", LINE ,
_ _FILE_, FUNCTION);
goto FREE SRC;
)
printf("[%d][%s][%s]G2D CMD MIXER TASK SUCCESSFULL'\n", LINE ,

_ FILE_, _ FUNCTION);

printf("save result data to file\n");
char sufix[40] = {0};
for (1 = 0; i < FRAME_TO BE PROCESS; ++i) {
if (i < 4) {
snprintf(sufix, 40, "rgh888");
} else if (i < 10)

IR © HiB2EREROBIRAR. RE—INF

38

Auwiner
g X W&

112 snprintf(sufix, 40, "y8");

113 else

114 snprintf(sufix, 40, "nv12");

115

116 snprintf(test info.dst image name[i], 100,

117 "../../result/frame%sd %dx%d to %dx%d.%s",i,

118 test info.info[i].src_image h.width,

119 test info.info[i].src image h.height,

120 test info.info[i].dst image h.width,

121 test info.info[i].dst image h.height, sufix);

122 if((test_info.dst_fp[i] = fopen(test_info.dst image name[i], "wb+")) ==
NULL) {

123 printf("open file %s fail.\n", test info.dst image name[il]);

124 break;

125 } else {

126 ret = fwrite(test info.dst ion[i].virt addr,

127 test info.out size[i], 1, test info.dst fp[il]);

128 fflush(test info.src fp);

129 printf("Frame %d saved\n", 1i);

130 }

131

132 }

133 [y

1341 3

3.3.2 G2D_CMD _CREATE TASK

e PROTOTYPE

(int ioctl(int fd, int cmd, void *arg))

¢ ARGUMENTS

cmd G2D_CMD_CREATE_TASK
arg[o] argiEmmixer paratsft, HMAERIEIMEEAE
arg[1] SELEMNEE, KFEFL

¢ RETURN

BRI task id, AFEHFEFL, HERRMNAKK

arg 01X AEHFrismMImixer paraNBSWE .

% ioctl s AT RIRMBUHLLIESLH], EMEMHAIE, RBESTFIRM.

WRINFE © HRB2ERRRNERAR. RE—IF 39

@ LWIWER
g MXHEER: WE

XS RESMET R MERR rcq AFIRNEURFITRARLEE L dma map 1 dma umap
£, MEREZEREHM mixer para BINARE. task id 2E—H, RERHERMAIELR, =
—H4IEX id, RIEX id ARALUH—F121E, thiligE, HER, FREXZHAT mixer para,

MTEF, RVERNFEMEBANBNaHELOHLIELF, KABIHENFTEN task id,
taskO A taskl, mixer para fNfAIf9:EE%E G2D CMD MIXER TASK HIfF.

arg[0] = (unsigned long)test info.info;
arg[1] = FRAME TO BE PROCESS;
taskd = ioctl(g2d fd, G2D CMD CREATE TASK, (arg));
if (task® < 1) {

printf("[%d][%s][%s]G2D CMD CREATE TASK failure!\n", _ LINE ,
__FILE__, FUNCTION);
goto FREE_SRC;
}
printf("[%d][%s][%s]G2D CMD CREATE TASK SUCCESSFULL!\n", LINE ,

_ FILE , FUNCTION);

arg[0] = (unsigned long)test info2.info;

arg[1] = FRAME TO BE_PROCESS2;

taskl = ioctl(g2d fd, G2D CMD CREATE TASK, (arg));
if (taskl < 1) {

printf("[%d][%s][%s]1G2D CMD CREATE TASK failure!\n", ULINEZ",
~ FILE , FUNCTION_);
goto FREE_SRC;
}
printf("[%d] [%s][%sdG2D_CMD_CREATE_TASK SWCCESSFULL'\m", _ LINE ,

_ FILE_ ,< FUNCTION);

3.3.3 G2D_CMD TASK APPLY

e PROTOTYPE

(int ioctl(int fd, int emd, void *arg))

¢ ARGUMENTS

cmd G2D_CMD_TASK_APPLY
arg[0] task id(E3G2D_CMD CREATE TASK&<I%13)
arg[1] argiEmmixer parafsft, #AEAIEFI AR
¢ RETURN
(Fon: o, &l &=)

WRINFE © HRB2ERRRNERAR. RE—IF 40

e e el e
N OOk N, OO

18

—_
©

@LWIMIER
: KRER: W

% ioctl apLRITER BHITHE O IERIEE(HE1F.

BEEAER arg[l] AH mixer para, #ZiZE G2D CMD CREATE TASK Z[EFiR[EH
mixer para HES@ET B — ioctl %< G2D CMD TASK GET PARA 17,
XERAEBEHEMBWEEZAEMN G2D CMD CREATE TASK BRIETiIFmisk, m
G2D CMD TASK APPLY 2ETF task id HHiTH.

arg[0] = taskO;
arg[1l] = (unsigned long)test info.info;
if(ioctl(g2d fd, G2D_CMD TASK _APPLY, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD TASK APPLY failure!\n", LINE ,
_ FILE , FUNCTION);
goto FREE_SRC;
)
printf("[%d][%s][%s]G2D CMD TASK APPLY SUCCESSFULL'\n", LINE ,

_ FILE_, _ FUNCTION);

arg[0] = taskl;
arg[1l] = (unsigned long)test info2.info;
if(ioctl(g2d fd, G2D CMD TASK APPLY, (arg)) < 0) {

printf("[%d][%s][%s]1G2D CMD TASK APPLY failure!\n", _ LINE ,
__FILE__, _ FUNCTION_);
goto FREE_SRC;
}
printf("[%d][%s][%s]1G2D CMD TASK APPLY SUCCESSFULL!\n",\ WLINE .4

_ FILE_, _ FUNCTION);

3.3.4 G2D/MD TASK DESTROY

e PROTOTYPE

(int ioctl(int fd, int cmd, void *arg))

¢ ARGUMENTS

cmd G2D_CMD_TASK _DESTROY
arg[o] task id
¢ RETURN
(mn: o, KM KMS)

1% ioctl MLHEARERIET task id BIHLAMIESCH,

IR © HiB2EREROBIRAR. RE—INF 41

N O U W N -

e
QU WN R O O

Auwiner

MHER: WE

arg[0] = taskO;;

__FILE_, _ FUNCTION);
arg[0] = taskl;;

_ FILE_, _ FUNCTION);

if(ioctl(g2d fd, G2D CMD TASK DESTROY, (arg)) < 0) {

printf("[%d][%s][%s]1G2D CMD TASK DESTROY failure!\n", LINE ,
~ FILE , FUNCTION);
goto FREE_SRC;
}
printf("[%d][%s][%s]1G2D CMD TASK DESTROY SUCCESSFULL!\n", LINE |,

if(ioctl(g2d fd, G2D_CMD_TASK DESTROY, (arg)) < 0) {

printf("[%d][%s][%s]G2D CMD TASK DESTROY failure!\n", LINE ,
_ FILE , FUNCTION);
goto FREE_SRC;
)
printf("[%d][%s][%s]G2D CMD TASK DESTROY SUCCESSFULL!\n", LINE ,

3.3.5 G2D CMD TASK GET PARA

e PROTOTYPE
(int ioctl(int fd, int cmd, void *arg))
e ARGUMENTS

cmd G2D CMD TASK DESTROY

arg[o] task id

arg[1] femEmixer parafgft, ZMEETRESERAIEH
e RETURN
(Fon: 0, & &S)
% ioctl S HERRIREUERE task id BY mixer para,
R % BITRIEE NBIEH FRERNAE B BERX A SIS

AR © HSLTRERHERAT, RB—IF 42

@LWIMIER
% B W

4.1 HIla]

4.1.1 XJFFiRlA

e mixer & 4byte X377
e rotate HHE 8byte X475, WAERBEEXK, KEXOHNIAZBWMANENS, UKL pitch
K

4.1.2 HWERINER

yuv 881, MEEAERY, W —=EE yuv420, HEHMERFERNER, BRARXEO,

4.1.3 HHEEE

G2D EHRIR PR TEES T 1 pixel

WRIRFE © HRB2ERRRNHERAE. RE—TIMF 43

@LWIMIER
g MXHEER: WE

E{E =R

WRAXFAE © 2021 HKiEEERHRHDBRATE. RE—TIF,

AN RNBEREERUERP, HEENEKELTRERRGERAT (“2F) HEHRZ
_t)J*y*lJo

AR E2SHREFRMRRIM =, RELTFEITFA, FARUMTAFFEEHL. £
fil. B ARVEBRAIEABTHBIHEE, BERSFUEMAPHERE,

(ot

LLWINER LLWINER LLWIMWER'
C 2*?4&\2".:\ *‘I’ *i C (=275

é)ﬂhﬁﬁéuﬂ&kﬁﬁm VBB EEMER. EAEERNTmPHRNEERS
*T’ Fﬂﬂ%ﬂ: ﬂ]ﬂ[ﬁﬁz%ﬂ'\, igﬁﬂﬁ%@ﬁﬁﬁkﬁﬁo

REFNA

BHEO~m. RSFFENZRESHKEEEREROEBRAE (EE") 2EEENHIE
EFMFREILIR AXEPEARN2EHER D ™~ m. RS AFEAIRER A EFr LS fEBEERE
N EARIBIARRIRERFMMAERRA, HREREAXENERNR, ERBTREEH
FAYERITH (BEERRFINEE, 8, BRER) EMNAFER, £EMFARE,

ZISSU‘%H’E?JT@%?“ RESE BT mREARLEMRE, FAXEABTEREEN, 88X
B, BAFTEN. 2EREDNELAXEPREFEHNER, EHFTHERBTT2REHEIR, H
ﬁmzﬁﬁlﬁﬁﬁ?ﬁi#ﬁ% (BEEAFRTEHER. BN, BHHHRK) IRERILE=ZANNE
t, @EHAAT. AEPHFRERFRR. 58 MBINHF AR EARREERERIES &S,

AR UABRRE R R E B th 75 TR T 2 EERET AR~ N BRI R ER ™ mY
HiEd, AIRERERTE =ZFIINFFF BEBTRASEZANFANRBEXNIFA, TR
BUARRAZMAERRTREEZ S AR RZEMRR (TR . 2EFWEMRERNE=
BIFARAMEERRIE. BEFEERMX S,

WRINFE © HRB2ERRRNERAR. RE—IF 44

	前言
	文档简介
	目标读者
	适用范围

	模块介绍
	模块功能介绍
	矩形填充(fill color rectgngle)
	旋转和镜像(rotate and mirror)
	alpha blending
	colorkey
	缩放(Stretchblt)
	二元光栅操作(rop2)
	三元光栅操作(maskblt rop3)

	相关术语介绍
	硬件术语
	软件术语

	模块配置介绍
	Device Tree 配置说明
	kernel menuconfig 配置说明

	源码结构介绍
	驱动框架介绍

	模块接口说明
	关键数据结构
	g2d_blt_flags
	g2d_fillrect_flags
	g2d_data_fmt(version 1.0)
	g2d_pixel_seq(version 1.0)
	g2d_blt_flags_h
	g2d_image(version 1.0)
	g2d_image_enh
	g2d_fmt_enh
	g2d_rop3_cmd_flag
	g2d_bld_cmd_flag
	g2d_ck
	g2d_alpha_mode_enh
	g2d_color_gmt
	g2d_scan_order(version 1.0)
	g2d_blt(version 1.0)
	g2d_fillrect(version 1.0)
	g2d_stretchblt(version 1.0)
	g2d_blt_h
	g2d_bld(version 1.0)

	函数接口
	1.0版本接口
	G2D_CMD_BITBLT
	G2D_CMD_FILLRECT
	G2D_CMD_STRETCHBLT
	G2D_CMD_PALETTE_TBL

	2.0版本接口
	G2D_CMD_BITBLT_H
	G2D_CMD_BLD_H
	G2D_CMD_MASK_H

	批处理接口
	G2D_CMD_MIXER_TASK
	G2D_CMD_CREATE_TASK
	G2D_CMD_TASK_APPLY
	G2D_CMD_TASK_DESTROY
	G2D_CMD_TASK_GET_PARA

	FAQ
	常见问题
	对齐问题
	输出格式显示
	输出宽度

