
Linux G2D
开发指南

版本号: 2.1
发布日期: 2021.4.10

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.0 2020.6.30 AWA1572 1. 创建该文档
2.0 2020.11.18 AWA1639 1. 更新适配 linux5.4
2.1 2021.4.10 AWA1693 1. 添加输出宽度限制说明

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 前言 1

1.1 文档简介 . 1
1.2 目标读者 . 1
1.3 适用范围 . 1

2 模块介绍 2
2.1 模块功能介绍 . 2

2.1.1 矩形填充 (fill color rectgngle) . 3
2.1.2 旋转和镜像 (rotate and mirror) . 3
2.1.3 alpha blending . 4
2.1.4 colorkey . 5
2.1.5 缩放 (Stretchblt) . 5
2.1.6 二元光栅操作 (rop2) . 6
2.1.7 三元光栅操作 (maskblt rop3) . 6

2.2 相关术语介绍 . 7
2.2.1 硬件术语 . 7
2.2.2 软件术语 . 7

2.3 模块配置介绍 . 8
2.3.1 Device Tree 配置说明 . 8
2.3.2 kernel menuconfig 配置说明 . 8

2.4 源码结构介绍 . 9
2.5 驱动框架介绍 . 10

3 模块接口说明 11
3.1 关键数据结构 . 11

3.1.1 g2d_blt_flags . 11
3.1.2 g2d_fillrect_flags . 12
3.1.3 g2d_data_fmt(version 1.0) . 12
3.1.4 g2d_pixel_seq(version 1.0) . 14
3.1.5 g2d_blt_flags_h . 16
3.1.6 g2d_image(version 1.0) . 17
3.1.7 g2d_image_enh . 18
3.1.8 g2d_fmt_enh . 18
3.1.9 g2d_rop3_cmd_flag . 20
3.1.10 g2d_bld_cmd_flag . 21
3.1.11 g2d_ck . 21
3.1.12 g2d_alpha_mode_enh . 22
3.1.13 g2d_color_gmt . 22
3.1.14 g2d_scan_order(version 1.0) . 23
3.1.15 g2d_blt(version 1.0) . 23
3.1.16 g2d_fillrect(version 1.0) . 24
3.1.17 g2d_stretchblt(version 1.0) . 24

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

3.1.18 g2d_blt_h . 25
3.1.19 g2d_bld(version 1.0) . 26

3.2 函数接口 . 26
3.2.1 1.0 版本接口 . 26

3.2.1.1 G2D_CMD_BITBLT . 26
3.2.1.2 G2D_CMD_FILLRECT . 28
3.2.1.3 G2D_CMD_STRETCHBLT . 29
3.2.1.4 G2D_CMD_PALETTE_TBL . 30

3.2.2 2.0 版本接口 . 31
3.2.3 G2D_CMD_BITBLT_H . 31
3.2.4 G2D_CMD_BLD_H . 33
3.2.5 G2D_CMD_MASK_H . 34

3.3 批处理接口 . 35
3.3.1 G2D_CMD_MIXER_TASK . 36
3.3.2 G2D_CMD_CREATE_TASK . 39
3.3.3 G2D_CMD_TASK_APPLY . 40
3.3.4 G2D_CMD_TASK_DESTROY . 41
3.3.5 G2D_CMD_TASK_GET_PARA . 42

4 FAQ 43
4.1 常见问题 . 43

4.1.1 对齐问题 . 43
4.1.2 输出格式显示 . 43
4.1.3 输出宽度 . 43

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

插 图
2-1 fill rectangle . 3
2-2 rotate and mirror . 4
2-3 alpha blending 1 . 4
2-4 alpha blending 2 . 5
2-5 colorkey . 5
2-6 scale and alpha blending . 6
2-7 mask . 7
2-8 menuconfig 4.9 . 8
2-9 menuconfig 5.4 . 9
2-10 G2D 代码框架图 . 10
3-1 mixerpara . 36

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iv

文档密级：秘密

1 前言

1.1 文档简介
本文主要介绍 sunxi 平台 G2D 模块的功能、驱动结构及模块的配置和调用方法

1.2 目标读者
• G2D 驱动开发人员/维护人员
• 应用层的 G2D 模块使用者

1.3 适用范围
表 1-1: 适用产品列表

产品名称 内核版本 驱动文件
T509 Linux-4.9 g2d_driver.c
MR813 Linux-4.9 g2d_driver.c
R818 Linux-4.9 g2d_driver.c
A133 Linux-4.9&Linux-5.4 g2d_driver.c
R528 Linux-5.4 g2d.c
H616 Linux-4.9&Linux-5.4 g2d_driver.c

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 模块介绍

G2D 驱动主要实现图像旋转/数据格式/颜色空间转换, 以及图层合成功能 (包括 alpha、
colorkey、rotate、mirror、rop、maskblt) 等加速功能。

2.1 模块功能介绍
G2D 硬件特性如下：

• Input format: iYUV422/PYUV422UVC/PYUV420UVC/PYUV411UVC/ARGB8888/
XRGB8888/RGB888/ARGB4444/ARGB1555/RGB565

• Output format: iYUV422/PYUV422UVC/PYUV420UVC/PYUV411UVC/ARGB8888/
XRGB8888/RGB888/ARGB4444/ARGB1555/RGB565/Y8

• Any format convert function, R/B swap
• 1 channel scaling pipelines for scaling up/down
• Programmalbe source image size up to 2048*2048 pixels
• Programmalbe destination image size up to 2048*2048 pixels
• 4 tap scale filter in horizontal and 2 tap in vertical direction
• 32 programmable coefficients for each tap
• Color space conversion betwwen RGB and YUV
• Clipping support

• Straight line/Rectangle/Point
• Block fill

• Rotate and mirror

• Rotation 90/180/270 counter-clockwise
• Mirror horizontal/vertical

• ROP

• BitBlt
• StretchBlt
• MaskBlt

• Colorkey support

• Source colorkey
• Destination colorkey

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

• Alpha blending support

• Pixel alpha blending
• Plane alpha blending
• Multi alpha blending
• Output alpha configurable support

2.1.1 矩形填充 (fill color rectgngle)

填充矩形区域功能可以实现对某块区域进行预订的颜色值填充，如下图就填充了 0xFF0080FF
的 ARGB值，该功能还可以通过设定数据区域大小实现画点和直线，同时也可以通过设定 flag实
现一种填充颜色和目标做 alpha 运算。

图 2-1: fill rectangle

2.1.2 旋转和镜像 (rotate and mirror)

旋转镜像主要是实现如下 Horizontal、Vertical、Rotate180°、Mirror45°、Rotate90°、
Mirror135°、Rotate270° 共 7 种操作。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

图 2-2: rotate and mirror

2.1.3 alpha blending

不同的图层之间可以做 alpha blending。Alpha分为 pixel alpha、plane alpha、multi alpha
三种：

pixel alpha 意为每个像素自带有一个专属 alpha 值；

plane alpha 则是一个图层中所有像素共用一个 globe alpha 值；

multi alpha则每个像素在代入 alpha运算时的值为 globe alpha*pixel alpha，可以通过 G2D
驱动接口的 flag 去控制。

图 2-3: alpha blending 1

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

图 2-4: alpha blending 2

2.1.4 colorkey

不同 image 之间可以做 colorkey 效果：

• 左图中 destination 的优先级高于 source，destination 中 match 部分（橙色五角星部
分），则被选择透过，显示为 source 与 destination 做 alpha blending 后的效果图。

• 右图中 source 的优先级高于 destination，则 source 中 match 部分（深红色五角星部
分），则被选择透过，直接显示 destination 与 source 做 alpha blending 后的效果图。

图 2-5: colorkey

2.1.5 缩放 (Stretchblt)

Stretchblt 主要是把 source 按照 destination 的 size 进行缩放，并最终与 destination 做
alpha blending、colorkey 等运算或直接旋转镜像后拷贝到目标，此接口在 1.0 版本上使用可
以旋转和缩放一起用，但是 2.0 版本以后，缩放和旋转不可以同时操作。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

图 2-6: scale and alpha blending

2.1.6 二元光栅操作 (rop2)

我们在画线和填充区域的时候将画笔和目标像素组合得到新的目标像素。

2.1.7 三元光栅操作 (maskblt rop3)

对于图像有同样光栅操作用于生成各种特殊效果, 我们要处理的有三种像素: 源图像像素, 目标图像
像素, 画刷像素 (模板图像像素)。如下图所示, 从左上到右下分别是 src ptn mask dst。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

图 2-7: mask

2.2 相关术语介绍

2.2.1 硬件术语

表 2-1: 硬件术语列表

术语 说明
G2D 2D 图形加速器

2.2.2 软件术语

表 2-2: 软件术语列表

术语 说明
Fill Rectangle 对某块区域进行预定的颜色值填充
Rotate And mirror 对图像进行旋转或镜像操作
Alpha Blending 对两个图像按照预定的比例进行颜色混合
Colorkey 在两个图像叠加混合的时候，对特殊色做特殊过滤

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

2.3 模块配置介绍

2.3.1 Device Tree 配置说明

g2d:g2d@01480000{
compatible = "allwinner,sunxi-g2d";
reg = <0x0 0x01480000 0x0 0xbffff>;
interrupts = <GIC_SPI 21 0x0104>;
clocks = <&clk_g2d>;
iommus = <&mmu_aw 5 1>;
status = "okay";

};

2.3.2 kernel menuconfig 配置说明

在命令行中进入 longan根目录，执行./build.sh menuconfig进入配置主界面,对于 linux4.9，
具体配置路径为：

Device Drivers->Character devices->sunxi g2d driver

图 2-8: menuconfig 4.9

对于 linux5.4，具体配置路径为：

Device Drivers->sunxi g2d driver

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

图 2-9: menuconfig 5.4

2.4 源码结构介绍
G2d 驱动的源代码位于内核在 drivers/char/sunxi_g2d 目录下：

drivers/char/sunxi_g2d/g2d_rcq
├── g2d_bld.c
├── g2d_bld.h
├── g2d_bsp.h
├── g2d.c
├── g2d_driver_i.h
├── g2d_mixer.c
├── g2d_mixer.h
├── g2d_mixer_type.h
├── g2d_ovl_u.c
├── g2d_ovl_u.h
├── g2d_ovl_v.c
├── g2d_ovl_v.h
├── g2d_rcq.c
├── g2d_rcq.h
├── g2d_rotate.c
├── g2d_rotate.h
├── g2d_rotate_type.h
├── g2d_scal.c
├── g2d_scal.h
├── g2d_top.c
├── g2d_top.h
├── g2d_top_type.h

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

├── g2d_wb.c
├── g2d_wb.h
└── Makefile

• g2d.c: 为 G2D 驱动顶层文件
• g2d_xxxx.c: 封装了相关功能的实现处理

2.5 驱动框架介绍
其代码框架如下图所示：

图 2-10: G2D 代码框架图

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

3 模块接口说明

3.1 关键数据结构

3.1.1 g2d_blt_flags

• 作用

g2d_blt_flags 用于描述一个 bitblt 和 stretchblt 的 flag 属性信息

• 定义

1 typedef enum {
2 G2D_BLT_NONE = 0x00000000,
3 G2D_BLT_PIXEL_ALPHA = 0x00000001,
4 G2D_BLT_PLANE_ALPHA = 0x00000002,
5 G2D_BLT_MULTI_ALPHA = 0x00000004,
6 G2D_BLT_SRC_COLORKEY = 0x00000008,
7 G2D_BLT_DST_COLORKEY = 0x00000010,
8 G2D_BLT_FLIP_HORIZONTAL = 0x00000020,
9 G2D_BLT_FLIP_VERTICAL = 0x00000040,

10 G2D_BLT_ROTATE90 = 0x00000080,
11 G2D_BLT_ROTATE180 = 0x00000100,
12 G2D_BLT_ROTATE270 = 0x00000200,
13 G2D_BLT_MIRROR45 = 0x00000400,
14 G2D_BLT_MIRROR135 = 0x00000800,
15 }g2d_blt_flags;

• 成员说明

1 G2D_BLT_NONE - 纯拷贝
2 G2D_BLT_PIXEL_ALPHA - 点alpha标志
3 G2D_BLT_PLANE_ALPHA - 面alpha标志
4 G2D_BLT_MULTI_ALPHA - 混合alpha标志
5 G2D_BLT_SRC_COLORKEY - 源colorkey标志
6 G2D_BLT_DST_COLORKEY - 目标colorkey标志
7 G2D_BLT_FLIP_HORIZONTAL - 水平翻转
8 G2D_BLT_FLIP_VERTICAL - 垂直翻转
9 G2D_BLT_ROTATE90 - 逆时针旋转90度

10 G2D_BLT_ROTATE180 - 逆时针旋转180度
11 G2D_BLT_ROTATE270 - 逆时针旋转270度
12 G2D_BLT_MIRROR45 - 镜像45度

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

13 G2D_BLT_MIRROR135 - 镜像135度

3.1.2 g2d_fillrect_flags

• 作用

g2d_fillrect_flags 用于描述一个 fillrect 属性信息

• 定义

1 typedef enum {
2 G2D_FIL_NONE = 0x00000000,
3 G2D_FIL_PIXEL_ALPHA = 0x00000001,
4 G2D_FIL_PLANE_ALPHA = 0x00000002,
5 G2D_FIL_MULTI_ALPHA = 0x00000004,
6 }g2d_fillrect_flags;

• 成员说明

1 G2D_FIL_NONE - 纯填充
2 G2D_FIL_PIXEL_ALPHA - 填充区域和目标做点alpha
3 G2D_FIL_PLANE_ALPHA - 填充区域和目标做面alpha
4 G2D_FIL_MULTI_ALPHA - 填充区域的alpha值*面alpha值后再和目标做alpha

3.1.3 g2d_data_fmt(version 1.0)

• 作用

g2d_data_fmt 用于描述像素格式

• 定义

1.0 版本支持的图像格式

1 typedef enum {
2 G2D_FMT_ARGB_AYUV8888 = (0x0),
3 G2D_FMT_BGRA_VUYA8888 = (0x1),
4 G2D_FMT_ABGR_AVUY8888 = (0x2),
5 G2D_FMT_RGBA_YUVA8888 = (0x3),
6 G2D_FMT_XRGB8888 = (0x4),

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

7 G2D_FMT_BGRX8888 = (0x5),
8 G2D_FMT_XBGR8888 = (0x6),
9 G2D_FMT_RGBX8888 = (0x7),

10 G2D_FMT_ARGB4444 = (0x8),
11 G2D_FMT_ABGR4444 = (0x9),
12 G2D_FMT_RGBA4444 = (0xA),
13 G2D_FMT_BGRA4444 = (0xB),
14 G2D_FMT_ARGB1555 = (0xC),
15 G2D_FMT_ABGR1555 = (0xD),
16 G2D_FMT_RGBA5551 = (0xE),
17 G2D_FMT_BGRA5551 = (0xF),
18 G2D_FMT_RGB565 = (0x10),
19 G2D_FMT_BGR565 = (0x11),
20 G2D_FMT_IYUV422 = (0x12),
21 G2D_FMT_8BPP_MONO = (0x13),
22 G2D_FMT_4BPP_MONO = (0x14),
23 G2D_FMT_2BPP_MONO = (0x15),
24 G2D_FMT_1BPP_MONO = (0x16),
25 G2D_FMT_PYUV422UVC = (0x17),
26 G2D_FMT_PYUV420UVC = (0x18),
27 G2D_FMT_PYUV411UVC = (0x19),
28
29 //只有输出才有的格式:
30 G2D_FMT_PYUV422 = (0x1A),
31 G2D_FMT_PYUV420 = (0x1B),
32 G2D_FMT_PYUV411 = (0x1C),
33
34 //只有输入才支持的格式:
35 G2D_FMT_8BPP_PALETTE = (0x1D),
36 G2D_FMT_4BPP_PALETTE = (0x1E),
37 G2D_FMT_2BPP_PALETTE = (0x1F),
38 G2D_FMT_1BPP_PALETTE = (0x20),
39 G2D_FMT_PYUV422UVC_MB16 = (0x21),
40 G2D_FMT_PYUV420UVC_MB16 = (0x22),
41 G2D_FMT_PYUV411UVC_MB16 = (0x23),
42 G2D_FMT_PYUV422UVC_MB32 = (0x24),
43 G2D_FMT_PYUV420UVC_MB32 = (0x25),
44 G2D_FMT_PYUV411UVC_MB32 = (0x26),
45 G2D_FMT_PYUV422UVC_MB64 = (0x27),
46 G2D_FMT_PYUV420UVC_MB64 = (0x28),
47 G2D_FMT_PYUV411UVC_MB64 = (0x29),
48 G2D_FMT_PYUV422UVC_MB128= (0x2A),
49 G2D_FMT_PYUV420UVC_MB128= (0x2B),
50 G2D_FMT_PYUV411UVC_MB128= (0x2C),
51 }g2d_data_fmt;

• 成员说明

1 G2D_FMT_ARGB8888 : alpha(8bit)R(8bit)G(8bit)B(8bit)
2 G2D_FMT_BGRA8888 : B(8bit)G(8bit)R(8bit)alpha(8bit)
3 G2D_FMT_ABGR8888 : alpha(8bit)B(8bit)G(8bit)R(8bit)
4 G2D_FMT_RGBA8888 : R(8bit)G(8bit)B(8bit)alpha(8bit)
5
6 G2D_FMT_XRGB8888 : 24bit,RGB各8bit,alpha为高位自动填充为0xFF
7 G2D_FMT_BGRX8888 : 24bit,BGR各8bit,alpha为低位自动填充为0xFF
8 G2D_FMT_XBGR8888 : 24bit,BGR各8bit,alpha为高位自动填充为0xFF
9 G2D_FMT_RGBX8888 : 24bit,RGB各8bit,alpha为低位自动填充为0xFF

10

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

11 G2D_FMT_ARGB4444 : alpha(4bit)R(4bit)G(4bit)B(4bit)
12 G2D_FMT_BGRA4444 : B(4bit)G(4bit)R(4bit)alpha(4bit)
13 G2D_FMT_ABGR4444 : alpha(4bit)B(4bit)G(4bit)R(4bit)
14 G2D_FMT_RGBA4444 : R(4bit)G(4bit)B(4bit)alpha(4bit)
15 G2D_FMT_ARGB1555 : alpha(1bit)R(5bit)G(5bit)B(5bit)
16 G2D_FMT_BGRA1555 : B(5bit)G(5bit)R(5bit)alpha(1bit)
17 G2D_FMT_ABGR1555 : alpha(1bit)B(5bit)G(5bit)R(5bit)
18 G2D_FMT_RGBA1555 : R(5bit)G(5bit)B(5bit)alpha(1bit)
19
20 G2D_FMT_RGB565 : R(5bit)G(6bit)B(5bit)
21 G2D_FMT_BGR565 : B(5bit)G(6bit)R(5bit)
22
23 G2D_FMT_IYUV422 : Interleaved YUV422
24
25 G2D_FMT_8BPP_MONO : 8bit per pixel mono
26 G2D_FMT_4BPP_MONO : 4bit per pixel mono
27 G2D_FMT_2BPP_MONO : 2bit per pixel mono
28 G2D_FMT_1BPP_MONO : 1bit per pixel mono
29
30 G2D_FMT_PYUV422UVC : Planar UV combined only
31 G2D_FMT_PYUV420UVC : Planar UV combined only
32 G2D_FMT_PYUV411UVC : Planar UV combined only
33
34 G2D_FMT_PYUV422 : Planar YUV422
35 G2D_FMT_PYUV420 : Planar YUV420
36 G2D_FMT_PYUV411 : Planar YUV411
37
38 G2D_FMT_8BPP_PALETTE: 8bit per pixel palette only for input
39 G2D_FMT_4BPP_PALETTE: 4bit per pixel palette only for input
40 G2D_FMT_2BPP_PALETTE: 2bit per pixel palette only for input
41 G2D_FMT_1BPP_PALETTE: 1bit per pixel palette only for input
42
43 G2D_FMT_PYUV422UVC_MB16: 16x16 tile base planar uv combined only for input
44 G2D_FMT_PYUV420UVC_MB16: 16x16 tile base planar uv combined only for input
45 G2D_FMT_PYUV411UVC_MB16: 16x16 tile base planar uv combined only for input
46 G2D_FMT_PYUV422UVC_MB32: 16x16 tile base planar uv combined only for input
47 G2D_FMT_PYUV420UVC_MB32: 16x16 tile base planar uv combined only for input
48 G2D_FMT_PYUV411UVC_MB32: 16x16 tile base planar uv combined only for input
49 G2D_FMT_PYUV422UVC_MB64: 16x16 tile base planar uv combined only for input
50 G2D_FMT_PYUV420UVC_MB64: 16x16 tile base planar uv combined only for input
51 G2D_FMT_PYUV411UVC_MB64: 16x16 tile base planar uv combined only for input
52 G2D_FMT_PYUV422UVC_MB128: 16x16 tile base planar uv combined only for input
53 G2D_FMT_PYUV420UVC_MB128: 16x16 tile base planar uv combined only for input
54 G2D_FMT_PYUV411UVC_MB128: 16x16 tile base planar uv combined only for input

3.1.4 g2d_pixel_seq(version 1.0)

• 作用

g2d_pixel_seq 用于描述像素序列

• 定义

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

1 typedef enum {
2 G2D_SEQ_NORMAL = 0x0,
3 G2D_SEQ_VYUY = 0x1,
4 G2D_SEQ_YVYU = 0x2,
5 G2D_SEQ_VUVU = 0x3,
6 G2D_SEQ_P10 = 0x4,
7 G2D_SEQ_P01 = 0x5,
8 G2D_SEQ_P3210 = 0x6,
9 G2D_SEQ_P0123 = 0x7,

10 G2D_SEQ_P76543210 = 0x8,
11 G2D_SEQ_P67452301 = 0x9,
12 G2D_SEQ_P10325476 = 0xA,
13 G2D_SEQ_P01234567 = 0xB,
14 G2D_SEQ_2BPP_BIG_BIG = 0xC,
15 G2D_SEQ_2BPP_BIG_LITTER = 0xD,
16 G2D_SEQ_2BPP_LITTER_BIG = 0xE,
17 G2D_SEQ_2BPP_LITTER_LITTER = 0xF,
18 G2D_SEQ_1BPP_BIG_BIG = 0x10,
19 G2D_SEQ_1BPP_BIG_LITTER = 0x11,
20 G2D_SEQ_1BPP_LITTER_BIG = 0x12,
21 G2D_SEQ_1BPP_LITTER_LITTER = 0x13,
22
23 }g2d_pixel_seq;

• 成员说明

1 G2D_SEQ_NORMAL : Normal sequence
2
3 //for interleaved yuv422
4 G2D_SEQ_VYUY : pixel 0在低16位
5 G2D_SEQ_YVYU : pixel 1在低16位
6
7 // for uv_combined yuv420
8 G2D_SEQ_VUVU : Planar VU combined only
9

10 // for 16bpp rgb
11 G2D_SEQ_P10 : pixel 0在低16位
12 G2D_SEQ_P01 : pixel 1在低16位
13
14 // planar format or 8bpp rgb
15 G2D_SEQ_P3210 : pixel 0在低8位
16 G2D_SEQ_P0123 : pixel 3在低8位
17
18 // for 4bpp rgb
19 G2D_SEQ_P76543210 : 7,6,5,4,3,2,1,0
20 G2D_SEQ_P67452301 : 6,7,4,5,2,3,0,1
21 G2D_SEQ_P10325476 : 1,0,3,2,5,4,7,6
22 G2D_SEQ_P01234567 : 0,1,2,3,4,5,6,7
23
24 // for 2bpp rgb
25 G2D_SEQ_2BPP_BIG_BIG :
26 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
27
28 G2D_SEQ_2BPP_BIG_LITTER :
29 12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3
30
31 G2D_SEQ_2BPP_LITTER_BIG :
32 3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

33
34 G2D_SEQ_2BPP_LITTER_LITTER :
35 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
36
37 // for 1bpp rgb
38 G2D_SEQ_1BPP_BIG_BIG :
39 31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
40
41 G2D_SEQ_1BPP_BIG_LITTER :
42 24,25,26,27,28,29,30,31,16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7
43
44 G2D_SEQ_1BPP_LITTER_BIG :
45 7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8,23,22,21,20,19,18,17,16,31,30,29,28,27,26,25,24
46
47 G2D_SEQ_1BPP_LITTER_LITTER :
48 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

3.1.5 g2d_blt_flags_h

• 作用

g2d_blt_flags_h 定义二元光栅操作码

• 定义

1 typedef enum {
2 G2D_BLT_NONE_0 = 0x0,
3 G2D_BLT_BLACKNESS,
4 G2D_BLT_NOTMERGEPEN,
5 G2D_BLT_MASKNOTPEN,
6 G2D_BLT_NOTCOPYPEN,
7 G2D_BLT_MASKPENNOT,
8 G2D_BLT_NOT,
9 G2D_BLT_XORPEN,

10 G2D_BLT_NOTMASKPEN,
11 G2D_BLT_MASKPEN,
12 G2D_BLT_NOTXORPEN,
13 G2D_BLT_NOP,
14 G2D_BLT_MERGENOTPEN,
15 G2D_BLT_COPYPEN,
16 G2D_BLT_MERGEPENNOT,
17 G2D_BLT_MERGEPEN,
18 G2D_BLT_WHITENESS = 0x000000ff,
19
20 G2D_ROT_90 = 0x00000100,
21 G2D_ROT_180 = 0x00000200,
22 G2D_ROT_270 = 0x00000300,
23 G2D_ROT_H = 0x00001000,
24 G2D_ROT_V = 0x00002000,
25
26 G2D_SM_DTLR_1 = 0x10000000,
27 } g2d_blt_flags_h;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

• 成员说明

1 G2D_BLT_NONE 单个源操作
2
3 //使用与物理调色板的索引0相关的色彩来填充目标矩形区域,(对缺省的物理调色板,该颜色为黑色)
4 G2D_BLT_BLACK BLACKNESS
5
6 G2D_BLT_NOTMERGEPEN dst = ~(dst+src) :
7 G2D_BLT_MASKNOTPEN dst =~src&dst
8 G2D_BLT_NOTCOPYPEN dst =~src
9 G2D_BLT_MASKPENNOT dst =src&~dst

10
11 //使目标矩形区域颜色取反
12 G2D_BLT_NOT dst =~dst
13 G2D_BLT_XORPEN dst =src^dst
14 G2D_BLT_NOTMASKPEN dst =~(src&dst)
15 G2D_BLT_MASKPEN dst =src&dst
16 G2D_BLT_NOTXORPEN dst =~(src^dst)
17 G2D_BLT_NOP dst =dst
18 G2D_BLT_MERGENOTPEN dst =~src+dst
19 G2D_BLT_COPEPEN dst =src
20 G2D_BLT_MERGEPENNOT dst =src+~dst
21 G2D_BLT_MERGEPEN dst =src+dst
22 //使用与物理调色板中索引1有关的颜色填充目标矩形区域(对于缺省物理调色板来说,这个颜色为白色)
23 G2D_BLT_WHITE WHITENESS

3.1.6 g2d_image(version 1.0)

• 作用

g2d_image 用于描述 image 属性信息

• 定义

1 typedef struct {
2 __u32 addr[3];
3 __u32 w;
4 __u32 h;
5 g2d_data_fmt format;
6 g2d_pixel_seq pixel_seq;
7 }g2d_image;

• 成员说明

1 addr[3]: 图像帧的基地址，对于UV combined，addr[0,1]有效，planar类型addr[0,1，2]有效，其他addr[0]
有效

2 w: 图像帧的宽
3 h: 图像帧的高

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

4 format: 图像帧buffer的像素格式，详见g2d_data_fmt
5 pixel_seq: 图像帧buffer的像素序列，详见g2d_pixel_seq

3.1.7 g2d_image_enh

• 作用

g2d_image_enh 主要描述图片的宽高、存放地址、是否做 Clip 处理，是否为预乘等。

• 定义

1 typedef struct {
2 int bbuff;
3 __u32 color;
4 g2d_fmt_enh format;
5 __u32 laddr[3];
6 __u32 haddr[3];
7 __u32 width;
8 __u32 height;
9 __u32 align[3];

10 g2d_rect clip_rect;
11 __u32 gamut;
12 int bpremul;
13 __u8 alpha;
14 g2d_alpha_mode_enh mode;
15 } g2d_image_enh;

• 成员说明

1 成员 作用
2 format : 图格式
3 laddr : 起始低位地址
4 haddr : 起始高位地址
5 width : 图宽度（in pixel）
6 height : 图高度（in pixel）
7 pitch : Buffer的pitch
8 clip_rect : ROI矩形
9 gamut : 图的色域

10 bpremul : 是否为预乘
11 alpha : 面alpha值
12 mode : alpha模式设置

3.1.8 g2d_fmt_enh

• 作用

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

g2d_fmt_enh 用于描述 G2D 模块支持的格式

• 定义

1 typedef enum{
2 G2D_FORMAT_ARGB8888,
3 G2D_FORMAT_ABGR8888,
4 G2D_FORMAT_RGBA8888,
5 G2D_FORMAT_BGRA8888,
6 G2D_FORMAT_XRGB8888,
7 G2D_FORMAT_XBGR8888,
8 G2D_FORMAT_RGBX8888,
9 G2D_FORMAT_BGRX8888,

10 G2D_FORMAT_RGB888,
11 G2D_FORMAT_BGR888,
12 G2D_FORMAT_RGB565,
13 G2D_FORMAT_BGR565,
14 G2D_FORMAT_ARGB4444,
15 G2D_FORMAT_ABGR4444,
16 G2D_FORMAT_RGBA4444,
17 G2D_FORMAT_BGRA4444,
18 G2D_FORMAT_ARGB1555,
19 G2D_FORMAT_ABGR1555,
20 G2D_FORMAT_RGBA5551,
21 G2D_FORMAT_BGRA5551,
22 G2D_FORMAT_ARGB2101010,
23 G2D_FORMAT_ABGR2101010,
24 G2D_FORMAT_RGBA1010102,
25 G2D_FORMAT_BGRA1010102,
26
27 /* invailed for UI channel */
28 G2D_FORMAT_IYUV422_V0Y1U0Y0 = 0x20,
29 G2D_FORMAT_IYUV422_Y1V0Y0U0,
30 G2D_FORMAT_IYUV422_U0Y1V0Y0,
31 G2D_FORMAT_IYUV422_Y1U0Y0V0,
32
33 G2D_FORMAT_YUV422UVC_V1U1V0U0,
34 G2D_FORMAT_YUV422UVC_U1V1U0V0,
35 G2D_FORMAT_YUV422_PLANAR,
36
37 G2D_FORMAT_YUV420UVC_V1U1V0U0 = 0x28,
38 G2D_FORMAT_YUV420UVC_U1V1U0V0,
39 G2D_FORMAT_YUV420_PLANAR,
40
41 G2D_FORMAT_YUV411UVC_V1U1V0U0 = 0x2c,
42 G2D_FORMAT_YUV411UVC_U1V1U0V0,
43 G2D_FORMAT_YUV411_PLANAR,
44
45 G2D_FORMAT_Y8 = 0x30,
46
47 /* YUV 10bit format */
48 G2D_FORMAT_YVU10_P010 = 0x34,
49
50 G2D_FORMAT_YVU10_P210 = 0x36,
51
52 G2D_FORMAT_YVU10_444 = 0x38,
53 G2D_FORMAT_YUV10_444 = 0x39,
54 }g2d_fmt_enh;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

3.1.9 g2d_rop3_cmd_flag

• 作用

g2d_rop3_cmd_flag 用于定义三元光栅操作码

• 定义

1 typedef enum {
2 G2D_ROP3_BLACKNESS = 0x00,
3 G2D_ROP3_NOTSRCERASE = 0x11,
4 G2D_ROP3_NOTSRCCOPY = 0x33,
5 G2D_ROP3_SRCERASE = 0x44,
6 G2D_ROP3_DSTINVERT = 0x55,
7 G2D_ROP3_PATINVERT = 0x5A,
8 G2D_ROP3_SRCINVERT = 0x66,
9 G2D_ROP3_SRCAND = 0x88,

10 G2D_ROP3_MERGEPAINT = 0xBB,
11 G2D_ROP3_MERGECOPY = 0xC0,
12 G2D_ROP3_SRCCOPY = 0xCC,
13 G2D_ROP3_SRCPAINT = 0xEE,
14 G2D_ROP3_PATCOPY = 0xF0,
15 G2D_ROP3_PATPAINT = 0xFB,
16 G2D_ROP3_WHITENESS = 0xFF,
17 }g2d_rop3_cmd_flag;

• 成员说明

1 G2D_ROP3_BLACKNESS dst = BLACK
2 G2D_ROP3_NOTSRCERASE dst = (NOT src) AND (NOT dst)
3 G2D_ROP3_NOTSRCCOPY dst = (NOT src) :将源矩形区域颜色取反,拷贝到目标矩形区域
4 G2D_ROP3_SRCERASE dst = src AND (NOT dst)
5 G2D_ROP3_DSTINVERT dst = (NOT dst)
6 G2D_ROP3_PATINVERT dst = pattern XOR dst :通过使用布尔型的异或(XOR)操作符将特定模式和目标矩形

区域颜色合并
7 G2D_ROP3_SRCINVERT dst = src XOR dst :通过使用布尔型的异或(XOR)操作符将源和目标矩形区域颜

色合并
8 G2D_ROP3_SRCAND dst = srcAND dst :通过使用与操作符将源和目标矩形区域颜色值合并
9 G2D_ROP3_MERGEPAINT dst = (NOT src) OR dst :通过使用布尔型的或(OR)操作符将反向的源矩形区域的颜

色与目标矩形区域颜色合并
10 G2D_ROP3_MERGECOPY dst = (src AND pattern)
11 G2D_ROP3_SRCCOPY dst = src :将源矩形区域直接拷贝到目标矩形区域
12 G2D_ROP3_SRCPAINT dst = src OR dst :通过使用布尔型的或(OR)操作符将源和目标矩形区域颜色

合并
13 G2D_ROP3_PATCOPY dst = pattern
14 G2D_ROP3_PATPAINT dst = DPSnoo :通过使用布尔型的或(OR)操作符将源矩形区域取反后的颜

色值与特定模式的颜色合并,然后使用OR操作符与该操作的结果与目标矩形区域内的颜色合并.
15 G2D_ROP3_WHITENESS dst = WHITE

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

文档密级：秘密

3.1.10 g2d_bld_cmd_flag

• 作用

g2d_bld_cmd_flag 定义 BLD 操作命令

• 定义

1 typedef enum {
2 G2D_BLD_CLEAR = 0x00000001,
3 G2D_BLD_COPY = 0x00000002,
4 G2D_BLD_DST = 0x00000003,
5 G2D_BLD_SRCOVER = 0x00000004,
6 G2D_BLD_DSTOVER = 0x00000005,
7 G2D_BLD_SRCIN = 0x00000006,
8 G2D_BLD_DSTIN = 0x00000007,
9 G2D_BLD_SRCOUT = 0x00000008,

10 G2D_BLD_DSTOUT = 0x00000009,
11 G2D_BLD_SRCATOP = 0x0000000a,
12 G2D_BLD_DSTATOP = 0x0000000b,
13 G2D_BLD_XOR = 0x0000000c,
14 G2D_CK_SRC = 0x00010000,
15 G2D_CK_DST = 0x00020000,
16 }g2d_bld_cmd_flag;

3.1.11 g2d_ck

• 作用

g2d_ck 定义了 colorkey 操作的参数

• 定义

1 typedef struct {
2 int match_rule;
3 __u32 max_color;
4 __u32 min_color;
5 }g2d_ck;

• 成员说明

1 match_rule 当match_rule为假时，Color Min=<Color<=Color Max表示满足匹配条件
2 当match_rule为真时，Color>Color Max or Color <Color Min表示满足匹配条件

版权所有 © 珠海全志科技股份有限公司。保留一切权利 21

文档密级：秘密

3 ck_max_color Color Max
4 ck_min_color Color Min

3.1.12 g2d_alpha_mode_enh

• 作用

g2d_alpha_mode_enh 定义进行 alpha blend 操作时，选择的 alpha mode

• 定义

1 typedef enum{
2 G2D_PIXEL_ALPHA,
3 G2D_GLOBAL_ALPHA,
4 G2D_MIXER_ALPHA,
5 }g2d_alpha_mode_enh;

• 成员说明

1 成员 作用
2 G2D_PIXEL_ALPHA 点alpha
3 G2D_GLOBAL_ALPHA 面alpha
4 G2D_MIXER_ALPHA 混合alpha

3.1.13 g2d_color_gmt

• 作用

g2d_color_gmt 定义进行位操作时，选择的颜色空间

• 定义

1 typedef enum{
2 G2D_BT601,
3 G2D_BT709,
4 G2D_BT2020,
5 }g2d_color_gmt;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 22

文档密级：秘密

3.1.14 g2d_scan_order(version 1.0)

• 作用

g2d_scan_order 定义进行 alpha blend 操作时，选择的图像扫行模式

• 定义

1 enum g2d_scan_order {
2 G2D_SM_TDLR = 0x00000000,
3 G2D_SM_TDRL = 0x00000001,
4 G2D_SM_DTLR = 0x00000002,
5 G2D_SM_DTRL = 0x00000003,
6 };

• 成员说明

1 G2D_SM_TDLR Top to down, Left to right
2 G2D_SM_DTLR Down to top, Left to right
3 G2D_SM_TDRL Top to down, Right to left
4 G2D_SM_DTRL Down to top, Left to right

3.1.15 g2d_blt(version 1.0)

• 作用

g2d_blt 用于一个源和目标做 blt 的信息

• 定义

1 typedef struct {
2 g2d_blt_flags flag;
3 g2d_image src_image;
4 g2d_rect src_rect;
5 g2d_image dst_image;
6 __s32 dst_x;
7 __s32 dst_y;
8 __u32 color;
9 __u32 alpha;

10 }g2d_blt;

• 成员说明

版权所有 © 珠海全志科技股份有限公司。保留一切权利 23

文档密级：秘密

1 flag : block transfer标志，详见g2d_blt_flags
2 src_image : 源图像信息，详见g2d_image
3 dst_image : 目标图像信息，详见g2d_image
4 dst_x : 目标矩形左上角x
5 dst_y : 目标矩形左上角y
6 color : colorkey颜色
7 alpha : 面alpha值

3.1.16 g2d_fillrect(version 1.0)

• 作用

g2d_fillrect 用于描述一个 fill rectangle 参数信息

• 定义

1 typedef struct {
2 g2d_fillrect_flags flag;
3 g2d_image dst_image;
4 g2d_rect dst_rect;
5 __u32 color;
6 __u32 alpha;
7 }g2d_fillrect;

• 成员说明

1 flag : 填充矩形标志，详见g2d_fillrect_flags
2 dst_image : 目标图像信息，详见g2d_image
3 dst_rect : 目标矩形信息，x/y/w/h-左上角x/左上角y/宽/高
4 color : 填充颜色
5 alpha : 面alpha值

3.1.17 g2d_stretchblt(version 1.0)

• 作用

g2d_stretchblt 用于描述一个 stretchblt 参数信息

• 定义

版权所有 © 珠海全志科技股份有限公司。保留一切权利 24

文档密级：秘密

1 typedef struct {
2 g2d_blt_flags flag;
3 g2d_image src_image;
4 g2d_rect src_rect;
5 g2d_image dst_image;
6 g2d_rect dst_rect;
7 __u32 color;
8 __u32 alpha;
9 } g2d_stretchblt;

• 成员说明

1 flag : block transfer标志，详见g2d_blt_flags
2 src_image : 源图像信息，详见g2d_image
3 src_rect : 源矩形信息，x/y/w/h-左上角x/左上角y/宽/高
4 dst_image : 目标图像信息，详见g2d_image
5 dst_rect : 目标矩形信息，x/y/w/h-左上角x/左上角y/宽/高
6 color : colorkey颜色
7 alpha : 面alpha值

3.1.18 g2d_blt_h

• 作用

g2d_blt_h 实现对 foreground 带缩放的 ROP2 处理。

• 定义

1 typedef struct {
2 g2d_blt_flags_h flag_h;
3 g2d_image_enh src_image_h;
4 g2d_image_enh dst_image_h;
5 __u32 color;
6 __u32 alpha;
7 }g2d_blt_h;

• 成员说明

1 flag_h : blt操作flag标志，增强版标志
2 src_image_h : 源图像信息,增强版的图像参数,详见g2d_image_enh
3 dst_image_h : 目标图像信息，增强版的图像参数
4 color : colorkey颜色
5 alpha : 面alpha值

版权所有 © 珠海全志科技股份有限公司。保留一切权利 25

文档密级：秘密

3.1.19 g2d_bld(version 1.0)

• 作用

g2d_bld 实现两幅图的 BLD 和 colorkey 操作。

• 定义

1 typedef struct {
2 g2d_bld_cmd_flag bld_cmd;
3 g2d_image_enh dst_image_h;
4 g2d_image_enh src_image_h;
5 g2d_ck ck_para;
6 }g2d_bld;/* blending enhance */

• 成员说明

1 bld_cmd : blending的操作flag标志，增强版标志
2 src_image_h : 源图像信息,增强版的图像参数
3 dst_image_h : 目标图像信息，增强版的图像参数
4 ck_para : colorkey参数

3.2 函数接口

3.2.1 1.0 版本接口

3.2.1.1 G2D_CMD_BITBLT

• 作用: BITBLT 函数实现的是两个图层的运算，比如源拷贝到目标；源旋转放入目标；源和目标
做 alpha blending/colorkey 后拷贝到目标

• 原型:

1 int ioctl(int *fd, int cmd, unsigned long arg);

• 参数:

• fd: G2D 设备文件标识符
• cmd: G2D_CMD_BITBLT

版权所有 © 珠海全志科技股份有限公司。保留一切权利 26

文档密级：秘密

• arg: arg 为 g2d_blt 结构体指针
• 返回:

• 0: 成功
• 其他: 失败

• 举例:

1 /* 输入/输出image buffer */
2 g2d_image image_front,scn;
3 g2d_rect src_rect;
4 g2d_blt blit;
5 __s32 dst_x, dst_y;
6
7 image_front.addr[0] = mem_in;
8 image_front.w = 800;
9 image_front.h = 480;

10 image_front.format = G2D_FMT_ARGB8888;
11 image_front.pixel_seq = G2D_SEQ_NORMAL;
12
13 scn.addr[0] = mem_out;
14 scn.w = 800;
15 scn.h = 480;
16 scn.format = G2D_FMT_RGBA8888;
17 scn.pixel_seq = G2D_SEQ_NORMAL;
18 src_rect.x = 0;
19 src_rect.y = 0;
20 src_rect.w = 480;
21 src_rect.h = 272;
22
23 dst_x = 0;
24 dst_y = 0;
25
26 /* 设置BITBLT flag标志：做点alpha和水平翻转 */
27 blit.flag = G2D_BLT_PIXEL_ALPHA| G2D_BLT_FLIP_HORIZONTAL;
28 blit.color = 0xee8899;
29 blit.alpha = 0x73;
30
31 /* 设置源imgae和源rect */
32 blit.src_image.addr[0] = image_front.addr[0];
33 blit.src_image.w = image_front.w;
34 blit.src_image.h = image_front.h;
35 blit.src_image.format = image_front.format;
36 blit.src_image.pixel_seq= image_front.pixel_seq;
37 blit.src_rect.x = src_rect.x;
38 blit.src_rect.y = src_rect.y;
39 blit.src_rect.w = src_rect.w;
40 blit.src_rect.h = src_rect.h;
41
42 /* 设置目标imgae和目标rect */
43 blit.dst_image.addr[0] = scn.addr[0];
44 blit.dst_image.w = scn.w;
45 blit.dst_image.h = scn.h;
46 blit.dst_image.format = scn.format;
47 blit.dst_image.pixel_seq= scn.pixel_seq;
48 blit.dst_x = dst_x;
49 blit.dst_y = dst_y;
50

版权所有 © 珠海全志科技股份有限公司。保留一切权利 27

文档密级：秘密

51 if(ioctl(g2d_fd, G2D_CMD_BITBLT, &blit)<0)
52 {
53 printf("G2D_CMD_BITBLT failed!\n");
54 }

3.2.1.2 G2D_CMD_FILLRECT

• 作用: 用一种颜色的画点画直线及矩形填充，同时也能实现填充颜色和目标做 alpha blending

• 原型:

1 int ioctl(int *fd, int cmd, unsigned long arg);

• 参数:

• fd: G2D 设备文件标识符
• cmd: G2D_CMD_FILLRECT
• arg: arg 为 g2d_fillrect 结构体指针

• 返回:

• 0: 成功
• 其他: 失败

• 举例:

1 /* 输出image buffer */
2 g2d_image scn;
3 g2d_rect dst_rect;
4 g2d_fillrect fillrect;
5
6 /* 设置FILLRECT标志：做面alpha */
7 fillrect.flag = G2D_FIL_PLANE_ALPHA;
8 fillrect.color = 0xFF345678;
9 fillrect.alpha = 0x40;

10
11 /* 设置目标image和目标rect */
12 fillrect.dst_image.addr[0] = scn.addr[0];
13 fillrect.dst_image.w = scn.w;
14 fillrect.dst_image.h = scn.h;
15 fillrect.dst_image.format = scn.format;
16 fillrect.dst_image.pixel_seq= scn.pixel_seq;
17 fillrect.dst_rect.x = dst_rect.x;
18 fillrect.dst_rect.y = dst_rect.y;
19 fillrect.dst_rect.w = dst_rect.w;
20 fillrect.dst_rect.h = dst_rect.h;
21
22 if (ioctl(g2d_fd, G2D_CMD_FILLRECT, &fillrect) < 0) {
23 printf("G2D_CMD_FILLRECT failed!\n");
24 }

版权所有 © 珠海全志科技股份有限公司。保留一切权利 28

文档密级：秘密

3.2.1.3 G2D_CMD_STRETCHBLT

• 作用: STRETCHBLT 函数实现的是两个图层的运算，比如源缩放到目标大小后拷贝到目标；
源缩放到目标大小旋转放入目标；源缩放到目标大小后和目标做 alpha blending/colorkey 拷
贝到目标

• 原型:

1 int ioctl(int *fd, int cmd, unsigned long arg);

• 参数:

• fd: G2D 设备文件标识符
• cmd: G2D_CMD_STRETCHBLT
• arg: arg 为 g2d_stretchblt 结构体指针

• 返回:

• 0: 成功
• 其他: 失败

• 举例:

1 /* 输出image buffer */
2 g2d_image image_front,scn;
3 g2d_rect src_rect,dst_rect;
4 g2d_stretchblt str;
5
6 image_front.addr[0] = mem_in;
7 image_front.w = 800;
8 image_front.h = 480;
9 image_front.format = G2D_FMT_PYUV420UVC;

10 image_front.pixel_seq = G2D_SEQ_NORMAL;
11 image_front.addr[1] = mem_in+ image_front.w*image_front.h;
12
13 scn.addr[0] = mem_out;
14 scn.w = 800;
15 scn.h = 480;
16 scn.format = G2D_FMT_ARGB8888;
17 scn.pixel_seq = G2D_SEQ_NORMAL;
18 src_rect.x = 0;
19 src_rect.y = 0;
20 src_rect.w = 480;
21 src_rect.h = 272;
22 dst_rect.x = 17;
23 dst_rect.y = 100;
24 dst_rect.w = 480;
25 dst_rect.h = 272;
26
27 /* 设置STRETCHBLT标志:做点alpha和旋转90度 */
28 str.flag = G2D_BLT_PIXEL_ALPHA|G2D_BLT_ROTATE90;
29 str.color = 0xee8899;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 29

文档密级：秘密

30 str.alpha = 0x73;
31
32 /* 设置源image和源rect */
33 str.src_image.addr[0] = image_front.addr[0];
34 str.src_image.addr[1] = image_front.addr[1];
35 str.src_image.w = image_front.w;
36 str.src_image.h = image_front.h;
37 str.src_image.format = image_front.format;
38 str.src_image.pixel_seq = image_front.pixel_seq;
39 str.src_rect.x = src_rect.x;
40 str.src_rect.y = src_rect.y;
41 str.src_rect.w = src_rect.w;
42 str.src_rect.h = src_rect.h;
43
44 /* 设置目标image和目标rect */
45 str.dst_image.addr[0] = scn.addr[0];
46 str.dst_image.w = scn.w;
47 str.dst_image.h = scn.h;
48 str.dst_image.format = scn.format;
49 str.dst_image.pixel_seq = scn.pixel_seq;
50 str.dst_rect.x = dst_rect.x;
51 str.dst_rect.y = dst_rect.y;
52 str.dst_rect.w = dst_rect.w;
53 str.dst_rect.h = dst_rect.h;
54
55 if(ioctl(g2d_fd, G2D_CMD_STRETCHBLT, &str) < 0)
56 {
57 printf("G2D_CMD_STRETCHBLT failed!\n");
58 }

3.2.1.4 G2D_CMD_PALETTE_TBL

• 作用: PALETTE_TAL 函数实现的是把查找表写入硬件 SDRAM，也只有在前面接口的源数据
format 设置为 palette 模式时才需要先使用这条命令

• 原型:

1 int ioctl(int *fd, int cmd, unsigned long arg);

• 参数:
• fd: G2D 设备文件标识符
• cmd: G2D_CMD_PALETTE_TBL
• arg: arg 为 g2d_palette 结构体指针

• 返回:
• 0: 成功
• 其他: 失败

• 举例:

版权所有 © 珠海全志科技股份有限公司。保留一切权利 30

文档密级：秘密

1 unsigned long length;
2 /* 查找表数组 */
3 unsigned long palette[0x100];
4 g2d_palette pal;
5
6 pal->pbuffer = &palette;
7 pal.size = length;
8
9 if(ioctl(g2d_fd, G2D_CMD_PALETTE_TBL, &pal)<0)

10 {
11 printf("G2D_CMD_PALETTE_TBL failed!\n");
12 }

3.2.2 2.0 版本接口

3.2.3 G2D_CMD_BITBLT_H

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_BITBLT_H
arg arg为g2d_blt_h结构体指针

• RETURNS
成功：0，失败：失败号

• DESCRIPTION
实现单幅图的缩放、格式转换等。实现对 foreground 带缩放的 ROP2 处理。

• DEMO

1 /* 旋转功能 */
2 blit.flag_h = G2D_ROT_90;
3 blit.src_image_h.addr[0] = saddr[0];
4 blit.src_image_h.format = G2D_FORMAT_ARGB8888;
5 blit.src_image_h.mode = G2D_GLOBAL_ALPHA;
6 blit.src_image_h.clip_rect.x = 0;
7 blit.src_image_h.clip_rect.y = 0;
8 blit.src_image_h.clip_rect.w = 1920;
9 blit.src_image_h.clip_rect.h = 1080;

10 blit.src_image_h.width = 1920;
11 blit.src_image_h.height = 1080;
12 blit.src_image_h.alpha = 0xff;
13 blit.dst_image_h.addr[0] = daddr[0];

版权所有 © 珠海全志科技股份有限公司。保留一切权利 31

文档密级：秘密

14 blit.dst_image_h.format = G2D_FORMAT_ARGB8888;
15 blit.dst_image_h.mode = G2D_GLOBAL_ALPHA;
16 blit.dst_image_h.clip_rect.x = 0;
17 blit.dst_image_h.clip_rect.y = 0;
18 blit.dst_image_h.clip_rect.w = 1920;
19 blit.dst_image_h.clip_rect.h = 1080;
20 blit.dst_image_h.alpha = 0xff;
21 blit.dst_image_h.width = 1920;
22 blit.dst_image_h.height = 1080;
23
24 if(ioctl(g2d_fd, G2D_CMD_BITBLT_H ,(unsigned long)(&blit)) < 0)
25 {
26 printf("[%d][%s][%s]G2D_CMD_BITBLT_H failure!\n",
27 __LINE__, __FILE__,__FUNCTION__);
28 return -1;
29 }
30
31 /* 缩放功能 */
32 blit.flag_h = G2D_BLT_NONE_0;
33 blit.src_image_h.addr[0] = saddr[0];
34 blit.src_image_h.format = G2D_FORMAT_ARGB8888;
35 blit.src_image_h.mode = G2D_GLOBAL_ALPHA;
36 blit.src_image_h.clip_rect.x = 0;
37 blit.src_image_h.clip_rect.y = 0;
38 blit.src_image_h.clip_rect.w = 1280;
39 blit.src_image_h.clip_rect.h = 800;
40 blit.src_image_h.width = 1280;
41 blit.src_image_h.height = 800;
42 blit.src_image_h.alpha = 0xff;
43 blit.dst_image_h.addr[0] = daddr[0];
44 blit.dst_image_h.format = G2D_FORMAT_ARGB8888;
45 blit.dst_image_h.mode = G2D_GLOBAL_ALPHA;
46 blit.dst_image_h.clip_rect.x = 0;
47 blit.dst_image_h.clip_rect.y = 0;
48 blit.dst_image_h.clip_rect.w = 1920;
49 blit.dst_image_h.clip_rect.h = 1080;
50 blit.dst_image_h.alpha = 0xff;
51 blit.dst_image_h.width = 1920;
52 blit.dst_image_h.height = 1080;
53
54 if(ioctl(g2d_fd, G2D_CMD_BITBLT_H ,(unsigned long)(&blit)) < 0)
55 {
56 printf("[%d][%s][%s]G2D_CMD_BITBLT_H failure!\n",
57 __LINE__, __FILE__,__FUNCTION__);
58 return -1;
59 }
60
61 /* 格式转换 */
62 blit.flag_h = G2D_BLT_NONE_0;
63 blit.src_image_h.addr[0] = saddr[0];
64 blit.src_image_h.format = G2D_FORMAT_ARGB8888;
65 blit.src_image_h.mode = G2D_GLOBAL_ALPHA;
66 blit.src_image_h.clip_rect.x = 0;
67 blit.src_image_h.clip_rect.y = 0;
68 blit.src_image_h.clip_rect.w = 1280;
69 blit.src_image_h.clip_rect.h = 800;
70 blit.src_image_h.width = 1280;
71 blit.src_image_h.height = 800;
72 blit.src_image_h.alpha = 0xff;
73 blit.dst_image_h.addr[0] = daddr[0];

版权所有 © 珠海全志科技股份有限公司。保留一切权利 32

文档密级：秘密

74 blit.dst_image_h.format = G2D_FORMAT_YUV420UVC_V1U1V0U0;
75 blit.dst_image_h.mode = G2D_GLOBAL_ALPHA;
76 blit.dst_image_h.clip_rect.x = 0;
77 blit.dst_image_h.clip_rect.y = 0;
78 blit.dst_image_h.clip_rect.w = 1280;
79 blit.dst_image_h.clip_rect.h = 800;
80 blit.dst_image_h.alpha = 0xff;
81 blit.dst_image_h.width = 1280;
82 blit.dst_image_h.height = 800;
83
84 if(ioctl(g2d_fd, G2D_CMD_BITBLT_H ,(unsigned long)(&blit)) < 0)
85 {
86 printf("[%d][%s][%s]G2D_CMD_BITBLT_H failure!\n",
87 __LINE__, __FILE__,__FUNCTION__);
88 return -1;
89 }

3.2.4 G2D_CMD_BLD_H

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_BLD_H
arg arg为g2d_bld结构体指针

• RETURNS
成功：0，失败：失败号

• DESCRIPTION
实现两幅图的 BLD(porter-duff) 操作

• DEMO

1 blend.bld_cmd = G2D_BLD_COPY;
2 blend.src_image_h.mode = G2D_GLOBAL_ALPHA;
3 blend.src_image_h.format = G2D_FORMAT_ARGB8888;
4 blend.src_image_h.alpha = 128;
5 blend.src_image_h.clip_rect.x = 0;
6 blend.src_image_h.clip_rect.y = 0;
7 blend.src_image_h.clip_rect.w = 1280;
8 blend.src_image_h.clip_rect.h = 800;
9 blend.src_image_h.width = 1280;

10 blend.src_image_h.height = 800;
11 blend.dst_image_h.mode = G2D_GLOBAL_ALPHA;
12 blend.dst_image_h.format = G2D_FORMAT_ARGB8888;
13 blend.dst_image_h.alpha = 128;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 33

文档密级：秘密

14 blend.dst_image_h.clip_rect.x = 0;
15 blend.dst_image_h.clip_rect.y = 0;
16 blend.dst_image_h.clip_rect.w = 1280;
17 blend.dst_image_h.clip_rect.h = 800;
18 blend.dst_image_h.width = 1280;
19 blend.dst_image_h.height = 800;
20
21 if(ioctl(g2d_fd, G2D_CMD_BLD_H ,(unsigned long)(&blend)) < 0)
22 {
23 printf("[%d][%s][%s]G2D_CMD_BLD_H failure!\n",
24 __LINE__, __FILE__,__FUNCTION__);
25 return -1;
26 }

3.2.5 G2D_CMD_MASK_H

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_MASK_H
arg arg为g2d_maskblt结构体指针

• RETURNS
成功：0，失败：失败号

• DESCRIPTION
根据掩膜图和光栅操作码对 src、pattern 和 dst 进行操作，并将结果保存到 dst 中.

• DEMO

1 mask.back_flag = G2D_ROP3_NOTSRCCOPY;
2 mask.fore_flag = G2D_ROP3_SRCINVERT;
3 mask.src_image_h.clip_rect.x = 0;
4 mask.src_image_h.clip_rect.y = 0;
5 mask.src_image_h.clip_rect.w = 1280;
6 mask.src_image_h.clip_rect.h = 800;
7 mask.src_image_h.width = 1280;
8 mask.src_image_h.height = 800;
9 mask.src_image_h.mode = G2D_GLOBAL_ALPHA;

10 mask.dst_image_h.clip_rect.x = 0;
11 mask.dst_image_h.clip_rect.y = 0;
12 mask.dst_image_h.clip_rect.w = 1280;
13 mask.dst_image_h.clip_rect.h = 800;
14 mask.dst_image_h.width = 1280;
15 mask.dst_image_h.height = 800;
16 mask.dst_image_h.mode = G2D_GLOBAL_ALPHA;
17 mask.mask_image_h.clip_rect.x = 0;

版权所有 © 珠海全志科技股份有限公司。保留一切权利 34

文档密级：秘密

18 mask.mask_image_h.clip_rect.y = 0;
19 mask.mask_image_h.clip_rect.w = 1280;
20 mask.mask_image_h.clip_rect.h = 800;
21 mask.mask_image_h.width = 1280;
22 mask.mask_image_h.height = 800;
23 mask.mask_image_h.mode = G2D_GLOBAL_ALPHA;
24 mask.ptn_image_h.clip_rect.x = 0;
25 mask.ptn_image_h.clip_rect.y = 0;
26 mask.ptn_image_h.clip_rect.w = 1280;
27 mask.ptn_image_h.clip_rect.h = 800;
28 mask.ptn_image_h.width = 1280;
29 mask.ptn_image_h.height = 800;
30 mask.ptn_image_h.mode = G2D_GLOBAL_ALPHA;
31 mask.src_image_h.alpha = 0xff;
32 mask.mask_image_h.alpha = 0xff;
33 mask.ptn_image_h.alpha = 0xff;
34 mask.dst_image_h.alpha = 0xff;
35 mask.src_image_h.format = G2D_FORMAT_ARGB8888;
36 mask.mask_image_h.format = G2D_FORMAT_ARGB8888;
37 mask.ptn_image_h.format = G2D_FORMAT_ARGB8888;
38 mask.dst_image_h.format = G2D_FORMAT_ARGB8888;
39
40 if(ioctl(int fd, G2D_CMD_MASK_H ,(unsigned long)(&mask)) < 0)
41 {
42 printf("[%d][%s][%s]G2D_CMD_MASK_H failure!\n",__LINE__, __FILE__,__FUNCTION__);
43 return -1;
44 }

3.3 批处理接口
struct mixer_para {

g2d_operation_flag op_flag;
g2d_blt_flags_h flag_h;
g2d_rop3_cmd_flag back_flag;
g2d_rop3_cmd_flag fore_flag;
g2d_bld_cmd_flag bld_cmd;
g2d_image_enh src_image_h;
g2d_image_enh dst_image_h;
g2d_image_enh ptn_image_h;
g2d_image_enh mask_image_h;
g2d_ck ck_para;

};

typedef enum {
OP_FILLRECT = 0x1,
OP_BITBLT = 0x2,
OP_BLEND = 0x4,
OP_MASK = 0x8,
OP_SPLIT_MEM = 0x10,

} g2d_operation_flag;

struct mixer_para 是 RCQ 批处理的核心结构体，可以看到除了第一个成员，其它成员的类型
都是旧驱动里面有的，struct mixer_para 是之前驱动接口结构体的一个合集，如图 2 所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 35

文档密级：秘密

图 3-1: mixerpara

所以你可以用批处理接口完成上面其它接口的功能，只要你设置好对应的成员和 g2d_operation_flag
即可.

3.3.1 G2D_CMD_MIXER_TASK

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd: G2D_CMD_MIXER_TASK

arg[0]: 设备文件标识符arg指向mixer_para指针，批处理的话就是数组指针。

arg[1]: 指针需要处理的帧的数量，大于等于1

• RETURN

成功：0，失败：失败号

用户要做的事情，就是填充好 mixer_para 数组，申请好输入输出内存，将要处理的图像写入到
输入内存里面，将处理好的图像在输出内存里面取出来。

下面是批处理缩放 16帧示例，其中 4帧是 rgb格式的缩放，6帧是 Y8的是缩放，6帧是 nv12
的缩放。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 36

文档密级：秘密

1
2 #define RGB_IMAGE_NAME "../../pic/c1080_good.rgb"
3 #define Y8_IMAGE_NAME "../../pic/en_dmabuf_bike_1280x720_220_Y8.bin"
4 #define NV12_IMAGE_NAME "../../pic/bike_1280x720_220.bin"
5
6 #define FRAME_TO_BE_PROCESS 16
7 /*4 rgb convert 6 Y8 convert 6 yuv420 convert*/
8 unsigned int out_width[FRAME_TO_BE_PROCESS] = {
9 192, 154, 108, 321, 447, 960, 241, 320,

10 1920, 1439, 1280, 1920, 2048, 720, 800, 480};
11 unsigned int out_height[FRAME_TO_BE_PROCESS] = {108, 87, 70, 217, 213, 640,
12 840, 240, 1080, 777, 800, 1080,
13 2048, 480, 480, 240};
14
15 struct test_info_t
16 {
17 struct mixer_para info[FRAME_TO_BE_PROCESS];
18
19 };
20
21 Int main()
22 {
23
24 test_info.info[0].flag_h = G2D_BLT_NONE_H;
25 test_info.info[0].op_flag = OP_BITBLT;
26 test_info.info[0].src_image_h.format = G2D_FORMAT_RGB888;
27 test_info.info[0].src_image_h.width = 1920;
28 test_info.info[0].src_image_h.height = 1080;
29 test_info.info[0].src_image_h.clip_rect.x = 0;
30 test_info.info[0].src_image_h.clip_rect.y = 0;
31 test_info.info[0].src_image_h.clip_rect.w = 1920;
32 test_info.info[0].src_image_h.clip_rect.h = 1080;
33 test_info.info[0].src_image_h.color = 0xee8899;
34 test_info.info[0].src_image_h.mode = G2D_PIXEL_ALPHA;
35 test_info.info[0].src_image_h.alpha = 0xaa;
36 test_info.info[0].src_image_h.align[0] = 0;
37 test_info.info[0].src_image_h.align[1] = 0;
38 test_info.info[0].src_image_h.align[2] = 0;
39
40 test_info.info[0].dst_image_h.format = G2D_FORMAT_RGB888;
41 test_info.info[0].dst_image_h.width = 800;
42 test_info.info[0].dst_image_h.height = 480;
43 test_info.info[0].dst_image_h.clip_rect.x = 0;
44 test_info.info[0].dst_image_h.clip_rect.y = 0;
45 test_info.info[0].dst_image_h.clip_rect.w = 1920;
46 test_info.info[0].dst_image_h.clip_rect.h = 1080;
47 test_info.info[0].dst_image_h.color = 0xee8899;
48 test_info.info[0].dst_image_h.mode = G2D_PIXEL_ALPHA;
49 test_info.info[0].dst_image_h.alpha = 255;
50 test_info.info[0].dst_image_h.align[0] = 0;
51 test_info.info[0].dst_image_h.align[1] = 0;
52 test_info.info[0].dst_image_h.align[2] = 0;
53 for (i = 0; i < FRAME_TO_BE_PROCESS; ++i) {
54 memcpy(&test_info.info[i], &test_info.info[0],
55 sizeof(struct mixer_para));
56 test_info.info[i].dst_image_h.width = out_width[i];
57 test_info.info[i].dst_image_h.height = out_height[i];
58 test_info.info[i].dst_image_h.clip_rect.w = out_width[i];
59 test_info.info[i].dst_image_h.clip_rect.h = out_height[i];
60 if (i < 4) {

版权所有 © 珠海全志科技股份有限公司。保留一切权利 37

文档密级：秘密

61 test_info.out_size[i] = test_info.info[i].dst_image_h.width *
test_info.info[i].dst_image_h.height * 3;

62 test_info.info[i].src_image_h.format = G2D_FORMAT_BGR888;
63 test_info.info[i].src_image_h.width = 1920;
64 test_info.info[i].src_image_h.height = 1080;
65 test_info.info[i].src_image_h.clip_rect.w = 1920;
66 test_info.info[i].src_image_h.clip_rect.h = 1080;
67 test_info.in_size[i] = 1920*1080*3;
68 snprintf(test_info.src_image_name[i], 100,"%s",RGB_IMAGE_NAME);
69 } else if (i < 10) {
70 test_info.out_size[i] = test_info.info[i].dst_image_h.width *

test_info.info[i].dst_image_h.height;
71 test_info.info[i].src_image_h.format = G2D_FORMAT_Y8;
72 test_info.info[i].src_image_h.width = 1280;
73 test_info.info[i].src_image_h.height = 720;
74 test_info.info[i].src_image_h.clip_rect.w = 1280;
75 test_info.info[i].src_image_h.clip_rect.h = 720;
76 test_info.in_size[i] = 1280*720;
77 snprintf(test_info.src_image_name[i], 100,"%s",Y8_IMAGE_NAME);
78 } else {
79 test_info.out_size[i] = test_info.info[i].dst_image_h.width *

test_info.info[i].dst_image_h.height * 2;
80 test_info.info[i].src_image_h.format =

G2D_FORMAT_YUV420UVC_U1V1U0V0;
81 test_info.info[i].src_image_h.width = 1280;
82 test_info.info[i].src_image_h.height = 720;
83 test_info.info[i].src_image_h.clip_rect.w = 1280;
84 test_info.info[i].src_image_h.clip_rect.h = 720;
85 test_info.in_size[i] = 1280*720*2;
86 snprintf(test_info.src_image_name[i], 100,"%s",NV12_IMAGE_NAME);
87 }
88 ret = ion_memory_request(&test_info.dst_ion[i], 1, NULL, test_info.

out_size[i]);
89 test_info.info[i].dst_image_h.fd = test_info.dst_ion[i].fd_data.fd;//rtos-

hal中的驱动不支持使用fd，这里请修改为物理地址，并设置好偏移
90
91 test_info.info[i].dst_image_h.format = test_info.info[i].src_image_h.

format;
92 ret = ion_memory_request(&test_info.src_ion[i], 0, test_info.

src_image_name[i], test_info.in_size[i]);
93 test_info.info[i].src_image_h.fd = test_info.src_ion[i].fd_data.fd;//rtos-

hal中的驱动不支持使用fd，这里请修改为物理地址，并设置好偏移
94 }
95 arg[0] = (unsigned long)test_info.info;
96 arg[1] = FRAME_TO_BE_PROCESS;
97 if (ioctl(g2d_fd, G2D_CMD_MIXER_TASK, (arg)) < 0) {
98 printf("[%d][%s][%s]G2D_CMD_MIXER_TASK failure!\n", __LINE__,
99 __FILE__, __FUNCTION__);

100 goto FREE_SRC;
101 }
102 printf("[%d][%s][%s]G2D_CMD_MIXER_TASK SUCCESSFULL!\n", __LINE__,
103 __FILE__, __FUNCTION__);
104
105
106 printf("save result data to file\n");
107 char sufix[40] = {0};
108 for (i = 0; i < FRAME_TO_BE_PROCESS; ++i) {
109 if (i < 4) {
110 snprintf(sufix, 40, "rgb888");
111 } else if (i < 10)

版权所有 © 珠海全志科技股份有限公司。保留一切权利 38

文档密级：秘密

112 snprintf(sufix, 40, "y8");
113 else
114 snprintf(sufix, 40, "nv12");
115
116 snprintf(test_info.dst_image_name[i], 100,
117 "../../result/frame%d_%dx%d_to_%dx%d.%s",i,
118 test_info.info[i].src_image_h.width,
119 test_info.info[i].src_image_h.height,
120 test_info.info[i].dst_image_h.width,
121 test_info.info[i].dst_image_h.height, sufix);
122 if((test_info.dst_fp[i] = fopen(test_info.dst_image_name[i], "wb+")) ==

NULL) {
123 printf("open file %s fail.\n", test_info.dst_image_name[i]);
124 break;
125 } else {
126 ret = fwrite(test_info.dst_ion[i].virt_addr,
127 test_info.out_size[i], 1, test_info.dst_fp[i]);
128 fflush(test_info.src_fp);
129 printf("Frame %d saved\n", i);
130 }
131
132 }
133
134 }

3.3.2 G2D_CMD_CREATE_TASK

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_CREATE_TASK

arg[0] arg指向mixer_para指针，批处理的话就是数组指针。

arg[1] 需要处理的帧的数量，大于等于1

• RETURN

成功：task id，大于等于1，其它情况则为失败

arg[0]对应的指针所指向的mixer_para内容会被更新。

该 ioctl 命令用于创建新的批处理实例，但不做硬件处理, 只是准备好软件。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 39

文档密级：秘密

这个过程会构造对应帧数的 rcq 队列内存以及进行输入输出图像的 dma map 和 dma umap 操
作，构造完毕之后会更新mixer_para回应用层。task_id是唯一的，只要不销毁批处理实例，会
一直占据这个 id，根据这个 id 用户可以进一步操作，比如设置，销毁，获取当前 mixer_para。

如下例子，会创建两个不同帧数和输入输出格式的批处理实例，最终得到两个不同的 task id，
task0 和 task1。mixer_para 如何构造参考 G2D_CMD_MIXER_TASK 的例子。

1 arg[0] = (unsigned long)test_info.info;
2 arg[1] = FRAME_TO_BE_PROCESS;
3 task0 = ioctl(g2d_fd, G2D_CMD_CREATE_TASK, (arg));
4 if (task0 < 1) {
5 printf("[%d][%s][%s]G2D_CMD_CREATE_TASK failure!\n", __LINE__,
6 __FILE__, __FUNCTION__);
7 goto FREE_SRC;
8 }
9 printf("[%d][%s][%s]G2D_CMD_CREATE_TASK SUCCESSFULL!\n", __LINE__,

10 __FILE__, __FUNCTION__);
11
12
13 arg[0] = (unsigned long)test_info2.info;
14 arg[1] = FRAME_TO_BE_PROCESS2;
15 task1 = ioctl(g2d_fd, G2D_CMD_CREATE_TASK, (arg));
16 if (task1 < 1) {
17 printf("[%d][%s][%s]G2D_CMD_CREATE_TASK failure!\n", __LINE__,
18 __FILE__, __FUNCTION__);
19 goto FREE_SRC;
20 }
21 printf("[%d][%s][%s]G2D_CMD_CREATE_TASK SUCCESSFULL!\n", __LINE__,
22 __FILE__, __FUNCTION__);

3.3.3 G2D_CMD_TASK_APPLY

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_TASK_APPLY

arg[0] task id(由G2D_CMD_CREATE_TASK命令获得）

arg[1] arg指向mixer_para指针，批处理的话就是数组指针

• RETURN

成功：0，失败：失败号

版权所有 © 珠海全志科技股份有限公司。保留一切权利 40

文档密级：秘密

该 ioctl 命令的作用是执行批处理的硬件操作。

值得注意 arg[1] 中的 mixer_para，必须是 G2D_CMD_CREATE_TASK 之后返回的
mixer_para 或者是通过另外一个 ioctl 命令 G2D_CMD_TASK_GET_PARA 才行，
这里不需要制定帧数的原因是前面的 G2D_CMD_CREATE_TASK 已经指定好帧数，而
G2D_CMD_TASK_APPLY 是基于 task id 来执行的。

1 arg[0] = task0;
2 arg[1] = (unsigned long)test_info.info;
3 if(ioctl(g2d_fd, G2D_CMD_TASK_APPLY, (arg)) < 0) {
4 printf("[%d][%s][%s]G2D_CMD_TASK_APPLY failure!\n", __LINE__,
5 __FILE__, __FUNCTION__);
6 goto FREE_SRC;
7 }
8 printf("[%d][%s][%s]G2D_CMD_TASK_APPLY SUCCESSFULL!\n", __LINE__,
9 __FILE__, __FUNCTION__);

10
11 arg[0] = task1;
12 arg[1] = (unsigned long)test_info2.info;
13 if(ioctl(g2d_fd, G2D_CMD_TASK_APPLY, (arg)) < 0) {
14 printf("[%d][%s][%s]G2D_CMD_TASK_APPLY failure!\n", __LINE__,
15 __FILE__, __FUNCTION__);
16 goto FREE_SRC;
17 }
18 printf("[%d][%s][%s]G2D_CMD_TASK_APPLY SUCCESSFULL!\n", __LINE__,
19 __FILE__, __FUNCTION__);

3.3.4 G2D_CMD_TASK_DESTROY

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_TASK_DESTROY

arg[0] task id

• RETURN

成功：0，失败：失败号

该 ioctl 命令的作用是销毁指定 task id 的批处理实例。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 41

文档密级：秘密

1 arg[0] = task0;;
2 if(ioctl(g2d_fd, G2D_CMD_TASK_DESTROY, (arg)) < 0) {
3 printf("[%d][%s][%s]G2D_CMD_TASK_DESTROY failure!\n", __LINE__,
4 __FILE__, __FUNCTION__);
5 goto FREE_SRC;
6 }
7 printf("[%d][%s][%s]G2D_CMD_TASK_DESTROY SUCCESSFULL!\n", __LINE__,
8 __FILE__, __FUNCTION__);
9 arg[0] = task1;;

10 if(ioctl(g2d_fd, G2D_CMD_TASK_DESTROY, (arg)) < 0) {
11 printf("[%d][%s][%s]G2D_CMD_TASK_DESTROY failure!\n", __LINE__,
12 __FILE__, __FUNCTION__);
13 goto FREE_SRC;
14 }
15 printf("[%d][%s][%s]G2D_CMD_TASK_DESTROY SUCCESSFULL!\n", __LINE__,
16 __FILE__, __FUNCTION__);

3.3.5 G2D_CMD_TASK_GET_PARA

• PROTOTYPE

int ioctl(int fd, int cmd, void *arg)

• ARGUMENTS

cmd G2D_CMD_TASK_DESTROY

arg[0] task id

arg[1] 指向mixer_para指针，多帧的话就是数组指针

• RETURN

成功：0，失败：失败号

该 ioctl 命令的作用是获取指定 task id 的 mixer para。

用户必须自行保证传入的指针所指向的内存足够存放这么多帧的参数

版权所有 © 珠海全志科技股份有限公司。保留一切权利 42

文档密级：秘密

4 FAQ

4.1 常见问题

4.1.1 对齐问题

• mixer 要 4byte 对齐
• rotate 输出要 8byte 对齐，输入没有要求，底层关心的只是输入的宽和高，以及输出的 pitch
大小

4.1.2 输出格式显示

yuv 格式，做旋转时，输出一律是 yuv420，旋转和缩放不能同时使用，要调用两次接口。

4.1.3 输出宽度

G2D 硬件模块不支持输出宽度等于 1 pixel。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 43

文档密级：秘密

著作权声明

版权所有 ©2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 44

	前言
	文档简介
	目标读者
	适用范围

	模块介绍
	模块功能介绍
	矩形填充(fill color rectgngle)
	旋转和镜像(rotate and mirror)
	alpha blending
	colorkey
	缩放(Stretchblt)
	二元光栅操作(rop2)
	三元光栅操作(maskblt rop3)

	相关术语介绍
	硬件术语
	软件术语

	模块配置介绍
	Device Tree 配置说明
	kernel menuconfig 配置说明

	源码结构介绍
	驱动框架介绍

	模块接口说明
	关键数据结构
	g2d_blt_flags
	g2d_fillrect_flags
	g2d_data_fmt(version 1.0)
	g2d_pixel_seq(version 1.0)
	g2d_blt_flags_h
	g2d_image(version 1.0)
	g2d_image_enh
	g2d_fmt_enh
	g2d_rop3_cmd_flag
	g2d_bld_cmd_flag
	g2d_ck
	g2d_alpha_mode_enh
	g2d_color_gmt
	g2d_scan_order(version 1.0)
	g2d_blt(version 1.0)
	g2d_fillrect(version 1.0)
	g2d_stretchblt(version 1.0)
	g2d_blt_h
	g2d_bld(version 1.0)

	函数接口
	1.0版本接口
	G2D_CMD_BITBLT
	G2D_CMD_FILLRECT
	G2D_CMD_STRETCHBLT
	G2D_CMD_PALETTE_TBL

	2.0版本接口
	G2D_CMD_BITBLT_H
	G2D_CMD_BLD_H
	G2D_CMD_MASK_H

	批处理接口
	G2D_CMD_MIXER_TASK
	G2D_CMD_CREATE_TASK
	G2D_CMD_TASK_APPLY
	G2D_CMD_TASK_DESTROY
	G2D_CMD_TASK_GET_PARA

	FAQ
	常见问题
	对齐问题
	输出格式显示
	输出宽度

