
Linux DMAC
开发指南

版本号: 2.2
发布日期: 2020.04.15

文档密级：秘密

版本历史

版本号 日期 制/修订人 内容描述
1.1 2020.06.29 AWA1440 1. 初版
2.0 2020.11.19 AWA1527 1.for linux-5.4
2.1 2021.04.08 XAA0190 1. 添加 linux-5.4 配置信息

2. 添加 linux-5.4 device tree 源码结
构关系

2.2 2020.04.15 XAA0190 1. 修改格式

版权所有 © 珠海全志科技股份有限公司。保留一切权利 i

文档密级：秘密

目 录
1 概述 1
1.1 编写目的 . 1
1.2 适用范围 . 1
1.3 相关人员 . 1

2 DMA Engine 框架 2
2.1 基本概述 . 2

2.1.1 术语约定 . 2
2.1.2 功能简介 . 2

2.2 基本结构 . 3
2.3 源码结构 . 3
2.4 模块配置 . 4

2.4.1 kernel menuconfig 配置 . 4
2.4.2 device tree 源码结构和路径 . 6
2.4.3 device tree 对 dma 控制器的通用配置 7
2.4.4 device tree 对 dma 申请者的配置 . 7

2.5 模式 . 7
2.5.1 内存拷贝 . 7
2.5.2 散列表 . 8
2.5.3 循环缓存 . 8

3 模块接口说明 10
3.1 dma_request_channel . 10
3.2 dma_request_chan . 10
3.3 dma_release_channel . 11
3.4 dmaengine_slave_config . 11
3.5 dmaengine_prep_slave_sg . 12
3.6 dmaengine_prep_dma_cyclic . 13
3.7 dmaengine_submit . 13
3.8 dma_async_issue_pending . 14
3.9 dmaengine_terminate_all . 14
3.10 dmaengine_pause . 14
3.11 dmaengine_resume . 15
3.12 dmaengine_tx_status . 15

4 DMA Engine 使用流程 16
4.1 基本流程 . 16
4.2 注意事项 . 16

5 使用范例 17
5.1 范例 . 17

6 FAQ 19

版权所有 © 珠海全志科技股份有限公司。保留一切权利 ii

文档密级：秘密

6.1 dma debug 宏 . 19
6.2 常见问题调试方法 . 21
6.3 利用 sunxi_dump 读写相应寄存器 . 21

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iii

文档密级：秘密

插 图
2-1 DMA Engine 框架图 . 3
2-2 内核 menuconfig 根菜单 . 4
2-3 内核 menuconfig 根菜单 . 5
2-4 linux-4.9 内核 menuconfig dma drivers 菜单 5
2-5 linux-5.4 内核 menuconfig dma drivers 菜单 6
2-6 DMA Engine 内存拷贝示意图 . 7
2-7 DMA Engine 散列拷贝示意图 (slave 与 master) 8
2-8 DMA Engine 散列拷贝示意图 (master 与 master) 8
2-9 DMA Engine 循环拷贝示意图 . 9
4-1 DMA Engine 使用流程 . 16
6-1 内核 menuconfig 根菜单 . 19
6-2 内核 menuconfig 根菜单 . 20
6-3 内核 menuconfig 根菜单 . 20

版权所有 © 珠海全志科技股份有限公司。保留一切权利 iv

文档密级：秘密

1 概述

1.1 编写目的
介绍 DMA Engine 模块及其接口使用方法：

1. dma driver framework
2. API 介绍
3. 使用范例及注意事项

1.2 适用范围
表 1-1: 适用产品列表

产品名称 内核版本 驱动文件
全志所有产品 Linux-4.9 sunxi-dma.c
全志所有产品 Linux-5.4 sun6i-dma.c

1.3 相关人员
• DMA 模块使用者
• 驱动模块负责人

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1

文档密级：秘密

2 DMA Engine 框架

2.1 基本概述
DMA Engine 是 linux 内核 dma 驱动框架，针对 DMA 驱动的混乱局面内核社区提出了一个全
新的框架驱动，目标在统一 dma API让各个模块使用 DMA时不用关心硬件细节，同时代码复用
提高。并且实现异步的数据传输，降低机器负载。

2.1.1 术语约定

表 2-1: DMA 模块相关术语介绍

术语 解释说明
SUNXI Allwinner 一系列 SOC 硬件平台
DMA Direct Memory Access(直接内存存取)
Channel DMA 通道
Slave 从通道，一般指设备通道
Master 主通道，一般指内存

2.1.2 功能简介

DMA Engine 向使用者提供统一的接口，不同的模式下使用不同的 DMA 接口，降低使用者过多
对硬件接口的关注。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 2

文档密级：秘密

2.2 基本结构

图 2-1: DMA Engine 框架图

2.3 源码结构
1 linux4.9
2 |
3 |-- drivers
4 | `-- dma
5 | |-- Kconfig
6 | |-- Makefile
7 | |-- dmaengine.c
8 | |-- dmaengine.h
9 | |-- of-dma.c
10 | |-- virt-dma.c
11 | |-- virt-dma.h
12 | `-- sunxi-dma.c
13 |
14 `-- include
15 `-- linux
16 |--sunxi
17 | `---dma-sun*.h
18 `-- dma
19 `-- sunxi-dma.h
20
21 linux5.4
22 |
23 `-- drivers
24 `-- dma
25 |-- Kconfig
26 |-- Makefile
27 |-- dmaengine.c
28 |-- dmaengine.h

版权所有 © 珠海全志科技股份有限公司。保留一切权利 3

文档密级：秘密

29 |-- of-dma.c
30 |-- virt-dma.c
31 |-- virt-dma.h
32 `-- sun6i-dma.c

2.4 模块配置

2.4.1 kernel menuconfig 配置

在命令行中进入 linux 目录，执行 make ARCH=arm64 menuconfig(32 位系统为 make
ARCH=arm menuconfig) 进入配置主界面 (Linux-5.4 内核版本在 longan 目录下执行：
./build.sh menuconfig, 在最后的配置中选择 Allwinner A31 SoCs DMA support)，并按以
下步骤操作。

首先，选择 Device Drivers 选项进入下一级配置，如下图所示：

图 2-2: 内核 menuconfig 根菜单

选择 DMA Engine support, 进入下级配置，如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 4

文档密级：秘密

图 2-3: 内核 menuconfig 根菜单

linux-4.9 选择 Sunxi SOC DMA support 和 Support sunxi SOC DMA to access 4G ad-
dress ，如下图所示：

图 2-4: linux-4.9 内核 menuconfig dma drivers 菜单

linux-5.4 选择 Allwinner A31 SoCs DMA support，如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 5

文档密级：秘密

图 2-5: linux-5.4 内核 menuconfig dma drivers 菜单

2.4.2 device tree 源码结构和路径

• 设备树文件的配置是该 SoC 所有方案的通用配置，对于 ARM64 CPU 而言，设备树的路径
为：kernel/{KERNEL_VERSION}/arch/arm64/boot/dts/sunxi/sun*.dtsi。

• 设备树文件的配置是该 SoC 所有方案的通用配置，对于 ARM32 CPU 而言，设备树的路径
为：kernel/{KERNEL_VERSION}/arch/arm/boot/dts/sun*.dtsi。

• 板级设备树 (board.dts) 路径：/device/config/chips/{IC}/configs/{BOARD}/board.dts

linux4.9 device tree 的源码结构关系如下：

1 board.dts
2 |--------sun*.dtsi
3 |------sun*-pinctrl.dtsi
4 |------sun*-clk.dts

linux5.4 device tree 的源码结构关系如下：

1 board.dts
2 |--------sun*.dtsi

版权所有 © 珠海全志科技股份有限公司。保留一切权利 6

文档密级：秘密

2.4.3 device tree 对 dma 控制器的通用配置

在 sun*.dtsi文件中，配置了该 SoC的 dma控制器的通用配置信息，一般不建议修改，由 dma
驱动维护者维护。

1 dma0:dma-controller@03002000 {
2 compatible = "allwinner,sun50i-dma"; //兼容属性，用于驱动和设备绑定
3 reg = <0x0 0x03002000 0x0 0x1000>; //寄存器基地址0x03002000和范围0x1000
4 interrupts = <GIC_SPI 42 IRQ_TYPE_LEVEL_HIGH>; //dma控制器对应的gic硬中断号和触发类型
5 clocks = <&clk_dma>; //dma使用的时钟，linux4.9配置在sun*-clk.dtsi中,linux5.4配置

在sun*.dtsi中
6 #dma-cells = <1>; //用于通过dts配置dma，目前没有使用
7 };

2.4.4 device tree 对 dma 申请者的配置

在 sun*.dtsi 文件中，配置了 SoC dma 控制器的申请者信息。

1 spi0: spi@5010000 {
2
3 dmas = <&dma 22>, <&dma 22>; //dma 通道号，参考dma spec
4 dma-names = "tx", "rx"; //dma 通道名字,与驱动对应
5
6 };

2.5 模式

2.5.1 内存拷贝

纯粹的内存拷贝，即从指定的源地址拷贝到指定的目的地址。传输完毕会发生一个中断，并调用
回调函数。

图 2-6: DMA Engine 内存拷贝示意图

版权所有 © 珠海全志科技股份有限公司。保留一切权利 7

文档密级：秘密

2.5.2 散列表

散列模式是把不连续的内存块直接传输到指定的目的地址。当传输完毕会发生一个中断，并调用
回调函数。

图 2-7: DMA Engine 散列拷贝示意图 (slave 与 master)

上述的散列拷贝操作是针对于 Slave 设备而言的，它支持的是 Slave 与 Master 之间的拷贝，还
有另一散列拷贝是专门对内存进行操作的，即 Master 与 Master 之间进行操作，具体形式图如
下：

图 2-8: DMA Engine 散列拷贝示意图 (master 与 master)

2.5.3 循环缓存

循环模式就是把一块 Ring buffer 切成若干片，周而复始的传输，每传完一个片会发生一个中
断，同时调用回调函数。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 8

文档密级：秘密

图 2-9: DMA Engine 循环拷贝示意图

版权所有 © 珠海全志科技股份有限公司。保留一切权利 9

文档密级：秘密

3 模块接口说明

3.1 dma_request_channel

• 原 型：struct dma_chan *dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *

fn_param)

• 作用：申请一个可用通道，返回 dma通道操作句柄 (在 linux-5.4上请使用 dma_request_chan)。

• 参数：

• mask: 所有申请的传输类型的掩码。

• fn:DMA 驱动私有的过滤函数，可以为 NULL。
• fn_param:DMA 驱动私有的过滤函数，传入的私有参数，可以为 NULL。

• 返回：

• 成功，返回 dma 通道操作句柄。

• 失败，返回 NULL

3.2 dma_request_chan

• 原型：struct dma_chan *dma_request_chan(struct device *dev, const char *name)

• 作用：申请一个可用通道，返回 dma 通道操作句柄。

• 参数：

• dev: 指向 dma 申请者的指针。

• name: 通道名字，与设备树的 dma-names 对应。

• 返回：

• 成功，返回 dma 通道操作句柄。

• 失败，返回 NULL

版权所有 © 珠海全志科技股份有限公司。保留一切权利 10

文档密级：秘密

3.3 dma_release_channel

• 原型：void dma_release_channel(struct dma_chan *chan)

• 作用：释放指定的 dma 通道。

• 参数：

• chan: 指向要释放的 dma 通道句柄。

• 返回：

• 无返回值

3.4 dmaengine_slave_config

• 原型：int dmaengine_slave_config(struct dma_chan *chan, struct dma_slave_config *config)

• 作用：配置 dma 通道的 slave 信息。

• 参数：

• chan: 指向要操作的 dma 通道句柄。

• config:dma 通道 slave 的参数。

• 返回：

• 成功，返回 0。

• 失败，返回错误码。

说明
dma_slave_config 结构说明如下：

1 struct dma_slave_config {
2 enum dma_transfer_direction direction;
3 dma_addr_t src_addr;
4 dma_addr_t dst_addr;
5 enum dma_slave_buswidth src_addr_width;
6 enum dma_slave_buswidth dst_addr_width;
7 u32 src_maxburst;
8 u32 dst_maxburst;
9 bool device_fc;``
10 unsigned int slave_id;
11 };
12
13 direction: 传输方向，取值MEM_TO_DEV DEV_TO_MEM MEM_TO_MEM DEV_TO_DEV
14

版权所有 © 珠海全志科技股份有限公司。保留一切权利 11

文档密级：秘密

15 src_addr: 源地址，必须是物理地址
16
17 dst_addr: 目的地址，必须是物理地址
18
19 src_addr_width: 源数据宽度，byte整数倍，取值1，2，4，8
20
21 dst_addr_width: 目的数据宽度，取值同上
22
23 src_max_burst: 源突发长度，取值1，4，8
24
25 dst_max_burst: 目的突发长度，取值同上
26
27 slave_id: 从通道id号，此处用作DRQ的设置，使用sunxi_slave_id(d, s)宏设置，具体取值参照include/linux/

sunxi-dma.h和include/linux/dma/sunxi/dma-sun*.h里使用。

说明
传输描述符介绍：

1 　　struct dma_async_tx_descriptor {
2 　　 dma_cookie_t cookie;
3 　　 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
4 　　 dma_addr_t phys;
5 　　 struct dma_chan *chan;
6 　　 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
7 　　 dma_async_tx_callback callback;
8 　　 void *callback_param;
9 　　};
10
11 cookie： 本次传输的cookie，在此通道上唯一
12
13 tx_submit： 本次传输的提交执行函数
14
15 callback： 传输完成后的回调函数
16
17 callback_param： 回调函数的参数

3.5 dmaengine_prep_slave_sg

• 原型：

struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(struct dma_chan *chan, struct scatterlist *

sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigend long flags, void *context)

• 作用：准备一次单包传输。

• 参数：

• chan: 指向要操作的 dma 通道句柄。

• sgl: 散列表地址，此散列表传输之前需要建立。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 12

文档密级：秘密

• sg_len: 散列表内 buffer 的个数。
• dma_transfer_direction dir:传输方向，此处为DMA_MEM_TO_DEV，DMA_DEV_TO_MEM。
• flags: 传输标志。

• 返回：

• 成功，返回一个传输描述符指针。

• 失败，返回 NULL。

3.6 dmaengine_prep_dma_cyclic

• 原型：

struct dma_async_tx_descriptor *dmaengine_pre_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr

, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags)

• 作用：准备一次环形 buffer 传输。

• 参数：

• chan: 指向要操作的 dma 通道句柄。

• buf_addr: 目的地址。
• buf_len: 环形 buffer 的长度。
• period_len: 每一小片 buffer 的长度。
• dma_transfer_direction dir:传输方向，此处为DMA_MEM_TO_DEV，DMA_DEV_TO_MEM。
• flags: 传输标志。

• 返回：

• 成功，返回一个传输描述符指针。

• 失败，返回 NULL。

3.7 dmaengine_submit

• 原型：dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)

• 作用：提交已经做好准备的传输。
• 参数：

• desc: 指向要提交的传输描述符。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 13

文档密级：秘密

• 返回：

• 成功，返回一个大于 0 的 cookie。

• 失败，返回错误码。

3.8 dma_async_issue_pending

• 原型：void dma_async_issue_pending(struct dma_chan *chan)

• 作用：启动通道传输。
• 参数：

• chan: 指向要使用的通道。

• 返回：

• 无返回值。

3.9 dmaengine_terminate_all

• 原型：int dmaengine_terminate_all(struct dma_chan *chan)

• 作用：停止通道上的所有传输。
• 参数：

• chan: 指向要终止的通道。

• 返回：

• 成功，返回 0。
• 失败，返回错误码。

! 警告
此功能会丢弃未开始的传输。

3.10 dmaengine_pause

• 原型：int dmaengine_pause(struct dma_chan *chan)

• 作用：暂停某通道的传输。
• 参数：

• chan: 指向要暂停传输的通道

• 返回：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 14

文档密级：秘密

• 成功，返回 0。
• 失败，返回错误码。

3.11 dmaengine_resume

• 原型：int dmaengine_resume(struct dma_chan *chan)

• 作用：恢复某通道的传输。
• 参数：

• chan: 指向要恢复传输的通道。

• 返回：

• 成功，返回 0。
• 失败，返回错误码。

3.12 dmaengine_tx_status

• 原 型：enum dma_status dmaengine_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct

dma_tx_state *state)

• 作用：查询某次提交的状态。
• 参数：

• chan: 指向要查询传输状态的通道。
• cookie:dmaengine_submit 接口返回的 id。
• state: 用于获取状态的变量地址。

• 返回：

• DMA_SUCCESS，表示传输成功完成。
• DMA_IN_PROGRESS，表示提交尚未处理或处理中。
• DMA_PAUSE，表示传输已经暂停。
• DMA_ERROR，表示传输失败。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 15

文档密级：秘密

4 DMA Engine 使用流程

本章节主要是讲解 DMA Engine 的使用流程，以及注意事项

4.1 基本流程

图 4-1: DMA Engine 使用流程

4.2 注意事项
• 回调函数里不允许休眠，以及调度
• 回调函数时间不宜过长
• Pending 并不是立即传输而是等待软中断的到来，cyclic 模式除外
• 对于 linux-4.9，在 dma_slave_config 中的 slave_id 对于 devices 必须要指定

版权所有 © 珠海全志科技股份有限公司。保留一切权利 16

文档密级：秘密

5 使用范例

5.1 范例
1 　　struct dma_chan *chan;
2 　　dma_cap_mask_t mask;
3 　　dma_cookie_t cookie;
4 　　struct dma_slave_config config;
5 　　struct dma_tx_state state;
6 　　struct dma_async_tx_descriptor *tx = NULL;
7 　　void *src_buf;
8 　　dma_addr_t src_dma;
9
10 dma_cap_zero(mask);
11 dma_cap_set(DMA_SLAVE, mask);
12 dma_cap_set(DMA_CYCLIC, mask);
13
14 /* 申请一个可用通道 */
15 chan = dma_request_channel(dt->mask, NULL, NULL);
16 if (!chan){
17 return -EINVAL;
18 }
19
20 　　src_buf = kmalloc(1024*4, GFP_KERNEL);
21 　　if (!src_buf) {
22 　　 dma_release_channel(chan);
23 　　 return -EINVAL;
24 　　}
25 　　
26 　　/* 映射地址用DMA访问 */
27 　　src_dma = dma_map_single(NULL, src_buf, 1024*4, DMA_TO_DEVICE);
28 　　
29 config.direction = DMA_MEM_TO_DEV;
30 config.src_addr = src_dma;
31 config.dst_addr = 0x01c;
32 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
33 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
34 config.src_maxburst = 1;
35 config.dst_maxburst = 1;
36 config.slave_id = sunxi_slave_id(DRQDST_AUDIO_CODEC, DRQSRC_SDRAM);
37
38 dmaengine_slave_config(chan, &config);
39
40 　　tx = dmaengine_pre_dma_cyclic(chan, scr_dma, 1024*4, 1024, DMA_MEM_TO_DEV,
41 　　 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
42 　　
43 　　/* 设置回调函数 */
44 　　tx->callback = dma_callback;
45 　　tx->callback = NULL;
46 　　
47 　　/* 提交及启动传输 */

版权所有 © 珠海全志科技股份有限公司。保留一切权利 17

文档密级：秘密

48 　　cookie = dmaengine_submit(tx);
49 　　dma_async_issue_pending(chan);

版权所有 © 珠海全志科技股份有限公司。保留一切权利 18

文档密级：秘密

6 FAQ

6.1 dma debug 宏
在内核的menuconfig菜单项中使能该选项后，在 dma传输时，会打印 dma描述符，寄存器和
其他一些 debug 信息，有助于我们进行 debug。该菜单配置项的打开方式如下：
在命令行中进入内核根目录 (kernel/linux-4.9)，执行 make ARCH=arm64(arm) menucon-
fig 进入配置主界面，并按以下步骤操作：首先，选择 Device Drivers 选项进入下一级配置，如
下图所示：

图 6-1: 内核 menuconfig 根菜单

选择 DMA Engine support, 进入下级配置，如下图所示：

版权所有 © 珠海全志科技股份有限公司。保留一切权利 19

文档密级：秘密

图 6-2: 内核 menuconfig 根菜单

选择 DMA Engine debugging, 如下图所示：

图 6-3: 内核 menuconfig 根菜单

把 CONFIG_DMADEVICES_DEBUG这个配置打开后，在使用 dma时，会有一些对应的打印
调试信息，方便我们定位问题

版权所有 © 珠海全志科技股份有限公司。保留一切权利 20

文档密级：秘密

6.2 常见问题调试方法

6.3 利用 sunxi_dump 读写相应寄存器
1 cd /sys/class/sunxi_dump/
2 1.查看一个寄存器
3 echo 0x03002000 > dump ;cat dump
4
5 结果如下：
6 cupid-p1:/sys/class/sunxi_dump # echo 0x03002000 > dump ;cat dump
7 0x00000022
8
9 2.写值到寄存器上
10 echo 0x03002000 0x1 > write ;cat write
11
12 3.查看一片连续寄存器
13 echo 0x03002000,0x03002fff > dump;cat dump
14
15 结果如下：
16 cupid-p1:/sys/class/sunxi_dump # echo 0x03002000,0x03002fff > dump;cat dump
17
18 0x0000000003002000: 0x00000022 0x00000000 0x00000000 0x00000000
19 0x0000000003002010: 0x00000000 0x00000000 0x00000000 0x00000000
20 0x0000000003002020: 0x000000ff 0x00000000 0x00000007 0x00000000
21 0x0000000003002030: 0x00000000 0x00000000 0x00000000 0x00000000
22 0x0000000003002040: 0x00030000 0x00000000 0x00000000 0x00000000
23 0x0000000003002050: 0x00000000 0x00000000 0x00000000 0x00000000
24 0x0000000003002060: 0x00000000 0x00000000 0x00000000 0x00000000
25 0x0000000003002070: 0x00000000 0x00000000 0x00000000 0x00000000
26 0x0000000003002080: 0x00000000 0x00000000 0x00000000 0x00000000
27 0x0000000003002090: 0x00000000 0x00000000 0x00000000 0x00000000
28 0x00000000030020a0: 0x00000000 0x00000000 0x00000000 0x00000000
29 0x00000000030020b0: 0x00000000 0x00000000 0x00000000 0x00000000
30 0x00000000030020c0: 0x00000000 0x00000000 0x00000000 0x00000000
31 0x00000000030020d0: 0x00000000 0x00000000 0x00000000 0x00000000
32 0x00000000030020e0: 0x00000000 0x00000000 0x00000000 0x00000000
33 0x00000000030020f0: 0x00000000 0x00000000 0x00000000 0x00000000
34 0x0000000003002100: 0x00000000 0x00000000 0xfc0000e0 0x83460240
35 0x0000000003002110: 0xfc106500 0x05096020 0x00000b80 0x00010008
36 0x0000000003002120: 0x00000000 0x00000000 0x0000000c 0xfc0000c0
37 0x0000000003002130: 0x00000000 0x00000000 0x00000000 0x00000000
38 0x0000000003002140: 0x00000000 0x00000000 0xfc0001e0 0x83430240
39 0x0000000003002150: 0xfc506200 0x05097030 0x00000e80 0x00010008
40 0x0000000003002160: 0x00000000 0x00000000 0x0000000c 0xfc0001c0
41 0x0000000003002170: 0x00000000 0x00000000 0x00000000 0x00000000
42 0x0000000003002180: 0x00000000 0x00000000 0x00000000 0x00000000
43 0x0000000003002190: 0x00000000 0x00000000 0x00000000 0x00000000
44 0x00000000030021a0: 0x00000000 0x00000001 0x00000000 0x00000000
45 0x00000000030021b0: 0x00000000 0x00000000 0x00000000 0x00000000
46 0x00000000030021c0: 0x00000000 0x00000000 0x00000000 0x00000000
47 0x00000000030021d0: 0x00000000 0x00000000 0x00000000 0x00000000
48 0x00000000030021e0: 0x00000000 0x00000001 0x00000000 0x00000000
49 0x00000000030021f0: 0x00000000 0x00000000 0x00000000 0x00000000
50 0x0000000003002200: 0x00000000 0x00000000 0x00000000 0x00000000
51 0x0000000003002210: 0x00000000 0x00000000 0x00000000 0x00000000
52 0x0000000003002220: 0x00000000 0x00000001 0x00000000 0x00000000

版权所有 © 珠海全志科技股份有限公司。保留一切权利 21

文档密级：秘密

53 0x0000000003002230: 0x00000000 0x00000000 0x00000000 0x00000000
54 0x0000000003002240: 0x00000000 0x00000000 0x00000000 0x00000000
55 0x0000000003002250: 0x00000000 0x00000000 0x00000000 0x00000000
56 0x0000000003002260: 0x00000000 0x00000001 0x00000000 0x00000000
57 0x0000000003002270: 0x00000000 0x00000000 0x00000000 0x00000000
58 0x0000000003002280: 0x00000000 0x00000000 0x00000000 0x00000000
59 0x0000000003002290: 0x00000000 0x00000000 0x00000000 0x00000000
60 0x00000000030022a0: 0x00000000 0x00000001 0x00000000 0x00000000
61 0x00000000030022b0: 0x00000000 0x00000000 0x00000000 0x00000000
62 0x00000000030022c0: 0x00000000 0x00000000 0x00000000 0x00000000
63 0x00000000030022d0: 0x00000000 0x00000000 0x00000000 0x00000000
64 0x00000000030022e0: 0x00000000 0x00000001 0x00000000 0x00000000
65 0x00000000030022f0: 0x00000000 0x00000000 0x00000000 0x00000000
66 0x0000000003002300: 0x00000000 0x00000000 0x00000000 0x00000000
67 0x0000000003002310: 0x00000000 0x00000000 0x00000000 0x00000000
68 0x0000000003002320: 0x00000000 0x00000001 0x00000000 0x00000000
69 0x0000000003002330: 0x00000000 0x00000000 0x00000000 0x00000000
70 0x0000000003002340: 0x00000000 0x00000000 0x00000000 0x00000000
71 0x0000000003002350: 0x00000000 0x00000000 0x00000000 0x00000000
72 0x0000000003002360: 0x00000000 0x00000001 0x00000000 0x00000000
73 0x0000000003002370: 0x00000000 0x00000000 0x00000000 0x00000000
74 0x0000000003002380: 0x00000000 0x00000000 0x00000000 0x00000000
75 0x0000000003002390: 0x00000000 0x00000000 0x00000000 0x00000000
76 0x00000000030023a0: 0x00000000 0x00000001 0x00000000 0x00000000
77 0x00000000030023b0: 0x00000000 0x00000000 0x00000000 0x00000000
78 0x00000000030023c0: 0x00000000 0x00000000 0x00000000 0x00000000
79 0x00000000030023d0: 0x00000000 0x00000000 0x00000000 0x00000000
80 0x00000000030023e0: 0x00000000 0x00000001 0x00000000 0x00000000

通过上述方式，可以查看，从而发现问题所在。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 22

文档密级：秘密

著作权声明

版权所有 ©2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护，其著作权由珠海全志科技股份有限公司（“全志”）拥有并保留
一切权利。

本文档是全志的原创作品和版权财产，未经全志书面许可，任何单位和个人不得擅自摘抄、复
制、修改、发表或传播本文档内容的部分或全部，且不得以任何形式传播。

商标声明

、 、 、 （不 完 全 列
举）均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商
标，产品名称，和服务名称，均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司（“全志”）之间签署的商业合
同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围
内。使用前请认真阅读合同条款和相关说明，并严格遵循本文档的使用说明。您将自行承担任何
不当使用行为（包括但不限于如超压，超频，超温使用）造成的不利后果，全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因，本文档内容有可能修改，如有变
更，恕不另行通知。全志尽全力在本文档中提供准确的信息，但并不确保内容完全没有错误，因
使用本文档而发生损害（包括但不限于间接的、偶然的、特殊的损失）或发生侵犯第三方权利事
件，全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的
过程中，可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承
担也不代为支付任何关于获取第三方许可的许可费或版税（专利税）。全志不对您所使用的第三
方许可技术做出任何保证、赔偿或承担其他义务。

版权所有 © 珠海全志科技股份有限公司。保留一切权利 23

	概述
	编写目的
	适用范围
	相关人员

	DMA Engine框架
	基本概述
	术语约定
	功能简介

	基本结构
	源码结构
	模块配置
	kernel menuconfig配置
	device tree源码结构和路径
	device tree对dma控制器的通用配置
	device tree对dma申请者的配置

	模式
	内存拷贝
	散列表
	循环缓存

	模块接口说明
	dma_request_channel
	dma_request_chan
	dma_release_channel
	dmaengine_slave_config
	dmaengine_prep_slave_sg
	dmaengine_prep_dma_cyclic
	dmaengine_submit
	dma_async_issue_pending
	dmaengine_terminate_all
	dmaengine_pause
	dmaengine_resume
	dmaengine_tx_status

	DMA Engine使用流程
	基本流程
	注意事项

	使用范例
	范例

	FAQ
	dma debug宏
	常见问题调试方法
	利用sunxi_dump读写相应寄存器

